

C
Pocket Reference

Peter Prinz and Ulla Kirch-Prinz

Translated by Tony Crawford

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,TITLE.21695 Page 3 Sunday, June 18, 2006 8:42 PM

C Pocket Reference
by Peter Prinz and Ulla Kirch-Prinz

Copyright © 2003 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America. This book was originally published
as C kurz & gut, Copyright © 2002 by O’Reilly Verlag GmbH & Co. KG.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly Media, Inc. books may be purchased for educational,
business, or sales promotional use. Online editions are also available
for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Editor: Jonathan Gennick
Production Editor: Jane Ellin
Cover Designer: Pam Spremulli
Interior Designer: David Futato

Printing History:
November 2002: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly
logo are registered trademarks of O’Reilly Media, Inc. The Pocket
Reference series designations, C Pocket Reference, the image of a cow,
and related trade dress are trademarks of O’Reilly Media, Inc. Many of
the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc. was aware of a trademark claim,
the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book,
the publisher and authors assume no responsibility for errors or
omissions, or for damages resulting from the use of the information
contained herein.

0-596-00436-2
[C] [6/06]

COPYRIGHT Page 1 Thursday, May 25, 2006 5:13 PM

v

Contents

Introduction 1

Fundamentals 2
C Program Structure 3
Character Sets 4
Identifiers 6
Categories and Scope of Identifiers 7

Basic Types 9
Integer Types 9
Real and Complex Floating Types 11
The Type void 13

Constants 14
Integer Constants 14
Floating Constants 16
Character Constants and String Literals 16

Expressions and Operators 18
Arithmetic Operators 20
Assignment Operators 21
Relational Operators 22
Logical Operators 23
Bitwise Operators 24
Memory Accessing Operators 25
Other Operators 27

vi | Contents

Type Conversions 29
Integer Promotion 29
Usual Arithmetic Conversions 30
Type Conversions in Assignments and Pointers 30

Statements 31
Block and Expression Statements 32
Jumps 33
Loops 35
Unconditional Jumps 37

Declarations 39
General Syntax and Examples 39
Complex Declarations 40

Variables 41
Storage Classes 41
Initialization 42

Derived Types 43
Enumeration Types 43
Structures, Unions, and Bit-Fields 45
Arrays 49
Pointers 52
Type Qualifiers and Type Definitions 55

Functions 57
Function Prototypes 58
Function Definitions 59
Function Calls 61
Functions with Variable Numbers of Arguments 62

Linkage of Identifiers 64

Preprocessing Directives 65

Contents | vii

Standard Library 73

Standard Header Files 73

Input and Output 74
Error Handling for Input/Output Functions 76
General File Access Functions 76
File Input/Output Functions 79

Numerical Limits and Number Classification 87
Value Ranges of Integer Types 87
Range and Precision of Real Floating Types 88
Classification of Floating-Point Numbers 90

Mathematical Functions 91
Mathematical Functions for Integer Types 91
Mathematical Functions for Real Floating Types 92
Optimizing Runtime Efficiency 94
Mathematical Functions for Complex Floating Types 95
Type-Generic Macros 96
Error Handling for Mathematical Functions 97
The Floating-Point Environment 98

Character Classification and Case Mapping 101

String Handling 103
Conversion Between Strings and Numbers 105
Multibyte Character Conversion 107

Searching and Sorting 108

Memory Block Management 109

Dynamic Memory Management 110

Time and Date 111

viii | Contents

Process Control 113
Communication with the Operating System 113
Signals 114
Non-Local Jumps 115
Error Handling for System Functions 116

Internationalization 116

Index 121

1

C Pocket Reference

Introduction
The programming language C was developed in the 1970s by
Dennis Ritchie at Bell Labs (Murray Hill, New Jersey) in the
process of implementing the Unix operating system on a
DEC PDP-11 computer. C has its origins in the typeless pro-
gramming language BCPL (Basic Combined Programming
Language, developed by M. Richards) and in B (developed by
K. Thompson). In 1978, Brian Kernighan and Dennis Ritchie
produced the first publicly available description of C, now
known as the K&R standard.

C is a highly portable language oriented towards the architec-
ture of today’s computers. The actual language itself is rela-
tively small and contains few hardware-specific elements. It
includes no input/output statements or memory manage-
ment techniques, for example. Functions to address these
tasks are available in the extensive C standard library.

C’s design has significant advantages:

• Source code is highly portable

• Machine code is efficient

• C compilers are available for all current systems

The first part of this pocket reference describes the C lan-
guage, and the second part is devoted to the C standard
library. The description of C is based on the ANSI X3.159
standard. This standard corresponds to the international

2 | C Pocket Reference

standard ISO/IEC 9899, which was adopted by the Interna-
tional Organization for Standardization in 1990, then
amended in 1995 and 1999. The ISO/IEC 9899 standard can
be ordered from the ANSI web site; see http://webstore.ansi.
org/.

The 1995 standard is supported by all common C compilers
today. The new extensions defined in the 1999 release (called
“ANSI C99” for short) are not yet implemented in many C
compilers, and are therefore specially labeled in this book.
New types, functions, and macros introduced in ANSI C99
are indicated by an asterisk in parentheses (*).

Font Conventions
The following typographic conventions are used in this
book:

Italic
Used to introduce new terms, and to indicate filenames.

Constant width
Used for C program code as well as for functions and
directives.

Constant width italic
Indicates replaceable items within code syntax.

Constant width bold
Used to highlight code passages for special attention.

Fundamentals
A C program consists of individual building blocks called
functions, which can invoke one another. Each function per-
forms a certain task. Ready-made functions are available in
the standard library; other functions are written by the pro-
grammer as necessary. A special function name is main():
this designates the first function invoked when a program
starts. All other functions are subroutines.

Fundamentals | 3

C Program Structure
Figure 1 illustrates the structure of a C program. The pro-
gram shown consists of the functions main() and showPage(),
and prints the beginning of a text file to be specified on the
command line when the program is started.

The statements that make up the functions, together with the
necessary declarations and preprocessing directives, form the
source code of a C program. For small programs, the source
code is written in a single source file. Larger C programs

Figure 1. A C program

/* Head.c: This program outputs the beginning of a *
 * text file to the standard output. *
 * Usage : Head <filename> */

#include <stdio.h>
#define LINES 22

void showPage(FILE *); // prototype

int main(int argc, char **argv)
{

FILE *fp; int exit_code = 0;
if (argc != 2)
{

fprintf(stderr, "Usage: Head <filename>\n");
exit_code = 1;

}
else if ((fp = fopen(argv[1], "r")) == NULL)
{

fprintf(stderr, "Error opening file!\n");
exit_code = 2;

}
else
{

showPage(fp);
fclose(fp);

}
return exit_code;

}

void showPage(FILE *fp) // Output a screen page
{

int count = 0;
char line[81];
while (count < LINES && fgets(line, 81, fp) != NULL)
{

fputs(line, stdout);
++count;

}
}

Comments

Preprocessor directives

Funtion main()

Other functions

4 | C Pocket Reference

consist of several source files, which can be edited and com-
piled separately. Each such source file contains functions
that belong to a logical unit, such as functions for output to a
terminal, for example. Information that is needed in several
source files, such as declarations, is placed in header files.
These can then be included in each source file via the
#include directive.

Source files have names ending in .c; header files have names
ending in .h. A source file together with the header files
included in it is called a translation unit.

There is no prescribed order in which functions must be
defined. The function showPage() in Figure 1 could also be
placed before the function main(). A function cannot be
defined within another function, however.

The compiler processes each source file in sequence and
decomposes its contents into tokens, such as function names
and operators. Tokens can be separated by one or more
whitespace characters, such as space, tab, or newline charac-
ters. Thus only the order of tokens in the file matters. The
layout of the source code—line breaks and indentation, for
example—is unimportant. The preprocessing directives are an
exception to this rule, however. These directives are com-
mands to be executed by the preprocessor before the actual
program is compiled, and each one occupies a line to itself,
beginning with a hash mark (#).

Comments are any strings enclosed either between /* and */,
or between // and the end of the line. In the preliminary
phases of translation, before any object code is generated,
each comment is replaced by one space. Then the preprocess-
ing directives are executed.

Character Sets
ANSI C defines two character sets. The first is the source
character set, which is the set of characters that may be used

Fundamentals | 5

in a source file. The second is the execution character set,
which consists of all the characters that are interpreted dur-
ing the execution of the program, such as the characters in a
string constant.

Each of these character sets contains a basic character set,
which includes the following:

• The 52 upper- and lower-case letters of the Latin alpha-
bet:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z

• The ten decimal digits (where the value of each character
after 0 is one greater than the previous digit):

0 1 2 3 4 5 6 7 8 9

• The following 29 graphic characters:
! " # % & ' () * + , – . / : ;
< = > ? [\] ^ _ { | } ~

• The five whitespace characters:

space, horizontal tab, vertical tab, newline, form feed

In addition, the basic execution character set contains the
following:

• The null character \0, which terminates a character string

• The control characters represented by simple escape
sequences, shown in Table 1, for controlling output
devices such as terminals or printers

Table 1. The standard escape sequences

Escape
sequence

Action on
display device

Escape
sequence

Action on
display device

\a Alert (beep) \' The character '

\b Backspace \" The character "

\f Form feed \? The character ?

\n Newline \\ The character \

\r Carriage return \o \oo \ooo
(o = octal digit)

The character with
this octal code

6 | C Pocket Reference

Any other characters, depending on the given compiler, can
be used in comments, strings, and character constants. These
may include the dollar sign or diacriticals, for example. How-
ever, the use of such characters may affect portability.

The set of all usable characters is called the extended charac-
ter set, which is always a superset of the basic character set.

Certain languages use characters that require more than one
byte. These multibyte characters may be included in the
extended character set. Furthermore, ANSI C99 provides the
integer type wchar_t (wide character type), which is large
enough to represent any character in the extended character
set. The modern Unicode character encoding is often used,
which extends the standard ASCII code to represent some
35,000 characters from 24 countries.

C99 also introduces trigraph sequences. These sequences,
shown in Table 2, can be used to input graphic characters
that are not available on all keyboards. The sequence ??!,
for example, can be entered to represent the “pipe” charac-
ter |.

Identifiers
Identifiers are names of variables, functions, macros, types,
etc. Identifiers are subject to the following formative rules:

\t Horizontal tab \xh..
(h..= string of
hex digits)

The character with
this hexadecimal
code\v Vertical tab

Table 2. The trigraph sequences

Trigraph ??= ??(??/ ??) ??' ??< ??! ??> ??-

Meaning # [\] ^ { | } ~

Table 1. The standard escape sequences (continued)

Escape
sequence

Action on
display device

Escape
sequence

Action on
display device

Fundamentals | 7

• An identifier consists of a sequence of letters (A to Z, a to
z), digits (0 to 9), and underscores (_).

• The first character of an identifier must not be a digit.

• Identifiers are case-sensitive.

• There is no restriction on the length of an identifier.
However, only the first 31 characters are generally signifi-
cant.

Keywords are reserved and must not be used as identifiers.
Following is a list of keywords:

External names—that is, identifiers of externally linked func-
tions and variables—may be subject to other restrictions,
depending on the linker: in portable C programs, external
names should be chosen so that only the first eight charac-
ters are significant, even if the linker is not case-sensitive.

Some examples of identifiers are:

Valid: a, DM, dm, FLOAT, _var1, topOfWindow
Invalid: do, 586_cpu, zähler, nl-flag, US_$

Categories and Scope of Identifiers
Each identifier belongs to exactly one of the following four
categories:

auto enum restrict(*) unsigned

break extern return void

case float short volatile

char for signed while

const goto sizeof _Bool(*)

continue if static _Complex(*)

default inline(*) struct _Imaginary(*)

do int switch

double long typedef

else register union

8 | C Pocket Reference

• Label names

• The tags of structures, unions, and enumerations. These
are identifiers that follow one of the keywords struct,
union, or enum (see “Derived Types”).

• Names of structure or union members. Each structure or
union type has a separate name space for its members.

• All other identifiers, called ordinary identifiers.

Identifiers of different categories may be identical. For exam-
ple, a label name may also be used as a function name. Such
re-use occurs most often with structures: the same string can
be used to identify a structure type, one of its members, and
a variable; for example:

struct person {char *person; /*...*/} person;

The same names can also be used for members of different
structures.

Each identifier in the source code has a scope. The scope is
that portion of the program in which the identifier can be
used. The four possible scopes are:

Function prototype
Identifiers in the list of parameter declarations of a func-
tion prototype (not a function definition) have function
prototype scope. Because these identifiers have no mean-
ing outside the prototype itself, they are little more than
comments.

Function
Only label names have function scope. Their use is lim-
ited to the function block in which the label is defined.
Label names must also be unique within the function.
The goto statement causes a jump to a labelled state-
ment within the same function.

Block
Identifiers declared in a block that are not labels have
block scope. The parameters in a function definition also
have block scope. Block scope begins with the

Basic Types | 9

declaration of the identifier and ends with the closing
brace (}) of the block.

File
Identifiers declared outside all blocks and parameter lists
have file scope. File scope begins with the declaration of
the identifier and extends to the end of the source file.

An identifier that is not a label name is not necessarily visible
throughout its scope. If an identifier with the same category
as an existing identifier is declared in a nested block, for
example, the outer declaration is temporarily hidden. The
outer declaration becomes visible again when the scope of
the inner declaration ends.

Basic Types
The type of a variable determines how much space it occu-
pies in storage and how the bit pattern stored is interpreted.
Similarly, the type of a function determines how its return
value is to be interpreted.

Types can be either predefined or derived. The predefined
types in C are the basic types and the type void. The basic
types consist of the integer types and the floating types.

Integer Types
There are five signed integer types: signed char, short int
(or short), int, long int (or long), and long long int(*) (or
long long(*)). For each of these types there is a correspond-
ing unsigned integer type with the same storage size. The
unsigned type is designated by the prefix unsigned in the type
specifier, as in unsigned int.

The types char, signed char, and unsigned char are formally
different. Depending on the compiler settings, however, char
is equivalent either to signed char or to unsigned char. The
prefix signed has no meaning for the types short, int, long,

10 | C Pocket Reference

and long long(*), however, since they are always considered
to be signed. Thus short and signed short specify the same
type.

The storage size of the integer types is not defined; however,
their width is ranked in the following order: char <= short
<= int <= long <= long long(*). Furthermore, the size of
type short is at least 2 bytes, long at least 4 bytes, and long
long at least 8 bytes. Their value ranges for a given imple-
mentation are found in the header file limits.h.

ANSI C99 also introduces the type _Bool to represent Bool-
ean values. The Boolean value true is represented by 1 and
false by 0. If the header file stdbool.h has been included,
then bool can be used as a synonym for _Bool and the mac-
ros true and false for the integer constants 1 and 0. Table 3
shows the standard integer types together with some typical
value ranges.

Table 3. Standard integer types with storage sizes and value ranges

Type Storage size Value range (decimal)

_Bool 1 byte 0 and 1

char 1 byte -128 to 127 or 0 to 255

unsigned char 1 byte 0 to 255

signed char 1 byte -128 to 127

int 2 or 4 bytes -32,768 to 32,767 or
-2,147,483,648 to 2,147,483,647

unsigned int 2 or 4 bytes 0 to 65,535 or
0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

long 4 bytes -2,147,483,648 to 2,147,483,647

unsigned long 4 bytes 0 to 4,294,967,295

long long(*) 8 bytes -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

unsigned long long(*) 8 bytes 0 to 18,446,744,073,709,551,615

Basic Types | 11

ANSI C99 introduced the header file stdint.h(*), which
defines integer types with specific widths (see Table 4). The
width N of an integer type is the number of bits used to rep-
resent values of that type, including the sign bit. (Generally,
N = 8, 16, 32, or 64.)

For example, int16_t is an integer type that is exactly 16 bits
wide, and int_fast32_t is the fastest integer type that is 32 or
more bits wide. These types must be defined for the widths
N = 8, 16, 32, and 64. Other widths, such as int24_t, are
optional. For example:

int16_t val = -10; // integer variable
 // width: exactly 16 bits

For each of the signed types described above, there is also an
unsigned type with the prefix u. uintmax_t, for example, rep-
resents the implementation’s widest unsigned integer type.

Real and Complex Floating Types
Three types are defined to represent non-integer real num-
bers: float, double, and long double. These three types are
called the real floating types.

The storage size and the internal representation of these
types are not specified in the C standard, and may vary from
one compiler to another. Most compilers follow the IEEE
754-1985 standard for binary floating-point arithmetic, how-
ever. Table 5 is also based on the IEEE representation.

Table 4. Integer types with defined width

Type Meaning

intN_t Width is exactly N bits

int_leastN_t Width is at least N bits

int_fastN_t The fastest type with width of at least N bits

intmax_t The widest integer type implemented

intptr_t Wide enough to store the value of a pointer

12 | C Pocket Reference

The header file float.h defines symbolic constants that
describe all aspects of the given representation (see “Numeri-
cal Limits and Number Classification”).

Internal representation of a real floating-point
number

The representation of a floating-point number x is always
composed of a sign s, a mantissa m, and an exponent exp to
base 2:

x = s * m * 2exp, where 1.0 <= m < 2 or m = 0

The precision of a floating type is determined by the number
of bits used to store the mantissa. The value range is deter-
mined by the number of bits used for the exponent.

Figure 2 shows the storage format for the float type (32-bit)
in IEEE representation.

The sign bit S has the value 1 for negative numbers and 0 for
other numbers. Because in binary the first bit of the mantissa
is always 1, it is not represented. The exponent is stored with
a bias added, which is 127 for the float type.

For example, the number –2.5 = –1 * 1.25 * 21 is stored as:

S = 1, Exponent = 1+127 = 128, Mantissa = 0.25

Table 5. Real floating types

Type Storage size
Value range
(decimal, unsigned) Precision (decimal)

float 4 bytes 1.2E-38 to 3.4E+38 6 decimal places

double 8 bytes 2.3E-308 to 1.7E+308 15 decimal places

long double 10 bytes 3.4E-4932 to 1.1E+4932 19 decimal places

Figure 2. IEEE storage format for the 32-bit float type

S Exponent Mantissa

Bit position: 31 30 23 22 0

Basic Types | 13

Complex floating types

ANSI C99 introduces special floating types to represent the
complex numbers and the pure imaginary numbers. Every
complex number z can be represented in Cartesian coordi-
nates as follows:

z = x + i*y

where x and y are real numbers and i is the imaginary unit
. The real numbers x and y represent respectively the real

part and the imaginary part of z.

Complex numbers can also be represented in polar coordinates:

z = r * (cos(theta) + i * sin(theta))

The angle theta is called the argument and the number r is
the magnitude or absolute value of z.

In C, a complex number is represented as a pair of real and
imaginary parts, each of which has type float, double, or
long double. The corresponding complex floating types are
float _Complex, double _Complex, and long double _Complex.

In addition, the pure imaginary numbers—i.e., the complex
numbers z = i*y where y is a real number—can also be rep-
resented by the types float _Imaginary, double _Imaginary,
and long double _Imaginary.

Together, the real and the complex floating types make up
the floating types.

The Type void
The type specifier void indicates that no value is available. It
is used in three kinds of situations:

Expressions of type void
There are two uses for void expressions. First, functions
that do not return a value are declared as void. For
example:

void exit (int status);

-1

14 | C Pocket Reference

Second, the cast construction (void)expression can be
used to explicitly discard the value of an expression. For
example:

(void)printf("An example.");

Prototypes of functions that have no parameters
For example:

int rand(void);

Pointers to void
The type void * (pronounced “pointer to void”) repre-
sents the address of an object, but not the object’s type.
Such “typeless” pointers are mainly used in functions
that can be called with pointers to different types as
parameters. For example:

void *memcpy(void *dest, void *source, size_t count);

Constants
Every constant is either an integer constant, a floating con-
stant, a character constant, or a string literal. There are also
enumeration constants, which are described in “Enumeration
Types.” Every constant has a type that is determined by its
value and its notation.

Integer Constants
Integer constants can be represented as ordinary decimal
numbers, octal numbers, or hexadecimal numbers:

• A decimal constant (base 10) begins with a digit that is
not 0; for example: 1024

• An octal constant (base 8) begins with a 0; for example:
012

• A hexadecimal constant (base 16) begins with the two
characters 0x or 0X; for example: 0x7f, 0X7f, 0x7F,
0X7F. The hexadecimal digits A to F are not case-
sensitive.

Constants | 15

The type of an integer constant, if not explicitly specified, is
the first type in the appropriate hierarchy that can represent
its value.

For decimal constants, the hierarchy of types is:

int, long, unsigned long, long long(*).

For octal or hexadecimal constants, the hierarchy of types is:

int, unsigned int, long, unsigned long, long long(*),
unsigned long long(*).

Thus, integer constants normally have type int. The type can
also be explicitly specified by one of the suffixes L or l (for
long), LL(*) or ll(*) (for long long(*)), and/or U or u (for
unsigned). Table 6 provides some examples.

The macros in Table 7 are defined to represent constants of
an integer type with a given maximum or minimum width N
(e.g., = 8, 16, 32, 64). Each of these macros takes a constant
integer as its argument and is replaced by the same value
with the appropriate type.

Table 6. Examples of integer constants

Decimal Octal Hexadecimal Type

15 017 0xf int

32767 077777 0x7FFF int

10U 012U 0xAU unsigned int

32768U 0100000U 0x8000u unsigned int

16L 020L 0x10L long

27UL 033ul 0x1BUL unsigned long

Table 7. Macros for integer constants of minimum or maximum width

Macro Return type

INTMAX_C() intmax_t

UINTMAX_C() uintmax_t

INTN_C() int_leastN_t

UINTN_C() uint_leastN_t

16 | C Pocket Reference

Floating Constants
A floating constant is represented as a sequence of decimal
digits with one decimal point, or an exponent notation.
Some examples are:

41.9
5.67E-3 // The number 5.67*10-3

E can also be written as e. The letter P or p is used to repre-
sent a floating constant with an exponent to base 2 (ANSI
C99); for example:

2.7P+6 // The number 2.7*26

The decimal point or the notation of an exponent using E, e,
P(*), or p(*) is necessary to distinguish a floating constant
from an integer constant.

Unless otherwise specified, a floating constant has type
double. The suffix F or f assigns the constant the type float;
the suffix L or l assigns it the type long double. Thus the
constants in the previous examples have type double, 12.34F
has type float, and 12.34L has type long double.

Each of the following constants has type double. All the con-
stants in each row represent the same value:

Character Constants and String Literals
A character constant consists of one or more characters
enclosed in single quotes. Some examples are:

'0' 'A' 'ab'

Character constants have type int. The value of a character
constant that contains one character is the numerical value of

5.19 0.519E1 0.0519e+2 519E-2

12. 12.0 .12E2 12e0

370000.0 37e+4 3.7E+5 0.37e6

0.000004 4E-6 0.4e-5 .4E-5

Constants | 17

the representation of the character. For example, in the
ASCII code, the character constant '0' has the value 48, and
the constant 'A' has the value 65.

The value of a character constant that contains more than
one character is dependent on the given implementation. To
ensure portability, character constants with more than one
character should be avoided.

Escape sequences such as '\n' may be used in character con-
stants. The characters ' and \ can also be represented this way.

The prefix L can be used to give a character constant the type
wchar_t; for example:

L'A' L'\x123'

A string literal consists of a sequence of characters and
escape sequences enclosed in double quotation marks; for
example:

"I am a string!\n"

A string literal is stored internally as an array of char (see
“Derived Types”) with the string terminator '\0'. It is there-
fore one byte longer than the specified character sequence.
The empty string occupies exactly one byte. A string literal is
also called a string constant, although the memory it occu-
pies may be modified.

The string literal "Hello!", for example, is stored as a char
array, as shown in Figure 3.

String literals that are separated only by whitespace are con-
catenated into one string. For example:

"hello" " world!" is equivalent to "hello world!".

Figure 3. A string literal stored as a char array

Stored as array of char

' H ' ' e ' ' l ' ' l ' ' o ' ' ! ' ' \0 '

18 | C Pocket Reference

Because the newline character is also a whitespace character,
this concatenation provides a simple way to continue a long
string literal in the next line of the source code.

Wide string literals can also be defined as arrays whose ele-
ments have type wchar_t. Again, this is done by using the
prefix L; for example:

L"I am a string of wide characters!"

Expressions and Operators
An expression is a combination of operators and operands. In
the simplest case, an expression consists simply of a con-
stant, a variable, or a function call. Expressions can also
serve as operands, and can be joined together by operators
into more complex expressions.

Every expression has a type and, if the type is not void, a
value. Some examples of expressions follow:

4 * 512 // Type: int
printf("An example!\n") // Type: int
1.0 + sin(x) // Type: double
srand((unsigned)time(NULL)) // Type: void
(int*)malloc(count*sizeof(int)) // Type: int *

In expressions with more than one operator, the precedence
of the operators determines the grouping of operands with
operators. The arithmetic operators *, /, and %, for example,
take precedence over + and –. In other words, the usual rules
apply for the order of operations in arithmetic expressions.
For example:

4 + 6 * 512 // equivalent to 4 + (6 * 512)

If a different grouping is desired, parentheses must be used:

(4 + 6) * 512

Table 8 lists the precedence of operators.

Expressions and Operators | 19

If two operators have equal precedence, then the operands
are grouped as indicated in the “Grouping” column of
Table 8. For example:

2 * 5 / 3 // equivalent to (2 * 5) / 3

Operators can be unary or binary: a unary operator has one
operand, while a binary operator has two. This distinction is
important for two reasons:

• All unary operators have the same precedence.

• The four characters –, +, *, and & can represent unary or
binary operators, depending on the number of operands.

Furthermore, C has one ternary operator: the conditional
operator ?: has three operands.

Table 8. Precedence of operators

Priority Operator Grouping

1 () [] -> . left to right

2 ! ~ ++ -- + –
 (type) * & sizeof

right to left

3 * / % left to right

4 + – left to right

5 << >> left to right

6 < <= > >= left to right

7 == != left to right

8 & left to right

9 ^ left to right

10 | left to right

11 && left to right

12 || left to right

13 ?: right to left

14 = += -= *= /= %=
&= ^= |= <<= >>=

right to left

15 , left to right

20 | C Pocket Reference

The individual operators are briefly described in Tables 9
through 16 in the following sections. The order in which the
operands are evaluated is not defined, except where indi-
cated. For example, there’s no guarantee which of the follow-
ing functions will be invoked first:

f1() + f2() // Which of the two functions is
 // called first is not defined.

Arithmetic Operators

The operands of arithmetic operators may have any arith-
metic type. Only the % operator requires integer operands.

The usual arithmetic conversions may be performed on the
operands. For example, 3.0/2 is equivalent to 3.0/2.0. The
result has the type of the operands after such conversion.

Table 9. The arithmetic operators

Operator Meaning Example Result

* Multiplication x * y The product of x and y.

/ Division x / y The quotient of x by y.

% Modulo division x % y The remainder of the division x / y.

+ Addition x + y The sum of x and y.

- Subtraction x – y The difference of x and y.

+ (unary) Positive sign +x The value of x.

- (unary) Negative sign -x The arithmetic negation of x.

++ Increment ++x
x++

x is incremented (x=x+1). The prefixed
operator (++x) increments the operand
before it is evaluated; the postfixed
operator (x++) increments the operand
after it is evaluated.

-- Decrement --x
x--

x is decremented (x=x-1). The prefixed
operator (--x) decrements the operand
before it is evaluated; the postfixed
operator (x--) decrements the operand
after it is evaluated.

Expressions and Operators | 21

Note that the result of division with integer operands is also
an integer! For example:

6 / 4 // Result: 1
6 % 4 // Result: 2
6.0 / 4.0 // Result: 1.5

The increment operator ++ (and analogously, the decrement
operator --) can be placed either before or after its operand.
A variable x is incremented (i.e., increased by 1) both by ++x
(prefix notation) and x++ (postfix notation). The expressions
nonetheless yield different values: the expression ++x has the
value of x increased by 1, while the expression x++ yields the
prior, unincremented value of x.

Because the operators ++ and -- perform an assignment, their
operand must be an lvalue; i.e., an expression that desig-
nates a location in memory, such as a variable.

The operators ++, --, + (addition), and – (subtraction) can
also be used on pointers. For more information on pointers
and pointer arithmetic, see the section “Derived Types.”

Assignment Operators
Assignments are performed by simple and compound assign-
ment operators, as shown in Table 10.

The left operand in an assignment must be an lvalue; i.e., an
expression that designates an object. This object is assigned a
new value.

Table 10. Assignment operators

Operator Meaning Example Result

= Simple
assignment

x = y Assign the value of y to x

op= Compound
assignment

x += y x op= y is equivalent to x = x op (y)
(where op is a binary arithmetic or binary
bitwise operator)

22 | C Pocket Reference

The simplest examples of lvalues are variable names. In the
case of a pointer variable ptr, both ptr and *ptr are lvalues.
Constants and expressions such as x+1, on the other hand,
are not lvalues.

The following operands are permissible in a simple assign-
ment (=):

• Two operands with arithmetic types

• Two operands with the same structure or union type

• Two pointers that both point to objects of the same type,
unless the right operand is the constant NULL

If one operand is a pointer to an object, then the other may
be a pointer to the “incomplete” type void (i.e., void *).

If the two operands have different types, the value of the
right operand is converted to the type of the left operand.

An assignment expression has the type and value of the left
operand after the assignment. Assignments are grouped from
right to left. For example:

a = b = 100; // equivalent to a=(b=100);
 // The value 100 is assigned to b and a.

A compound assignment has the form x op= y, where op is a
binary arithmetic operator or a binary bitwise operator. The
value of x op (y) is assigned to x. For example:

a *= b+1; // equivalent to a = a * (b + 1);

In a compound assignment x op= y, the expression x is only
evaluated once. This is the only difference between x op= y
and x = x op (y).

Relational Operators
Every comparison is an expression of type int that yields the
value 1 or 0. The value 1 means “true” and 0 means “false.”
Comparisons use the relational operators listed in Table 11.

Expressions and Operators | 23

The following operands are permissible for all relational
operators:

• Two operands with real arithmetic types. The usual
arithmetic conversions may be performed on the oper-
ands.

• Two pointers to objects of the same type.

The equality operators == and != can also be used to compare
complex numbers. Furthermore, the operands may also be
pointers to functions of the same type. A pointer may also be
compared with NULL or with a pointer to void. For example:

int cmp, *p1, *p2;
. . .
cmp = p1 < p2; // if p1 is less than p2, then cmp = 1;
 // otherwise cmp = 0.

Logical Operators
The logical operators, shown in Table 12, can be used to
combine the results of several comparison expressions into
one logical expression.

Table 11. The relational operators

Operator Meaning Example Result: 1 (true) or 0 (false)

< less than x < y 1 if x is less than y

<= less than or equal to x <= y 1 if x is less than or equal to y

> greater than x > y 1 if x is greater than y

>= greater than or equal to x >= y 1 if x is greater than or equal to y

== equal to x == y 1 if x is equal to y

!= not equal to x != y 1 if x is not equal to y. In all other
cases, the expression yields 0.

Table 12. The logical operators

Operator Meaning Example Result: 1 (true) or 0 (false)

&& logical
AND

x && y 1 if both x and y are not equal to 0

24 | C Pocket Reference

The operands of logical operators may have any scalar (i.e.,
arithmetic or pointer) type. Any value except 0 is interpreted
as “true”; 0 is “false.”

Like relational expressions, logical expressions yield the val-
ues “true” or “false”; that is, the int values 1 or 0:

!x || y // "(not x) or y" yields 1 (true)
 // if x == 0 or y != 0

The operators && and || first evaluate the left operand. If the
result of the operation is already known from the value of the
left operand (i.e., the left operand of && is 0 or the left oper-
and of || is not 0), then the right operand is not evaluated.
For example:

i < max && scanf("%d", &x) == 1

In this logical expression, the function scanf() is only called
if i is less than max.

Bitwise Operators
There are six bitwise operators, described in Table 13. All of
them require integer operands.

|| logical OR x || y 1 if either or both of x and y is not equal to 0

! logical
NOT

!x 1 if x equals 0. In all other cases, the expression
yields 0.

Table 13. The bitwise operators

Operator Meaning Example Result (for each bit position)

& bitwise AND x & y 1, if 1 in both x and y

| bitwise OR x | y 1, if 1 in either x or y, or both

^ bitwise
exclusive
OR

x ^ y 1, if 1 in either x or y, but not both

Table 12. The logical operators (continued)

Operator Meaning Example Result: 1 (true) or 0 (false)

Expressions and Operators | 25

The logical bitwise operators, & (AND), | (OR), ^ (exclusive
OR), and ~ (NOT) interpret their operands bit by bit: a bit
that is set, i.e., 1, is considered “true”; a cleared bit, or 0, is
“false”. Thus, in the result of z = x & y, each bit is set if and
only if the corresponding bit is set in both x and y. The usual
arithmetic conversions are performed on the operands.

The shift operators << and >> transpose the bit pattern of the
left operand by the number of bit positions indicated by the
right operand. Integer promotions are performed before-
hand on both operands. The result has the type of the left
operand after integer promotion. Some examples are:

int x = 0xF, result;
result = x << 4; // yields 0xF0
result = x >> 2; // yields 0x3

The bit positions vacated at the right by the left shift << are
always filled with 0 bits. Bit values shifted out to the left are
lost.

The bit positions vacated at the left by the right shift >> are
filled with 0 bits if the left operand is an unsigned type or has
a non-negative value. If the left operand is signed and nega-
tive, the left bits may be filled with 0 (logical shift) or with the
value of the sign bit (arithmetic shift), depending on the
compiler.

Memory Accessing Operators
The operators in Table 14 are used to access objects in mem-
ory. The terms used here, such as pointer, array, structure,
etc., are introduced later under “Derived Types.”

~ bitwise NOT ~x 1, if 0 in x

<< shift left x << y Each bit in x is shifted y positions to the left

>> shift right x >> y Each bit in x is shifted y positions to the right

Table 13. The bitwise operators (continued)

Operator Meaning Example Result (for each bit position)

26 | C Pocket Reference

The operand of the address operator & must be an expression
that designates a function or an object. The address operator
& yields the address of its operand. Thus an expression of the
form &x is a pointer to x. The operand of & must not be a bit-
field, nor a variable declared with the storage class specifier
register.

The indirection operator * is used to access an object or a
function through a pointer. If ptr is a pointer to an object or
function, then *ptr designates the object or function pointed
to by ptr. For example:

int a, *pa; // An int variable and a pointer to int.

pa = &a; // Let pa point to a.
*pa = 123; // Now equivalent to a = 123;

The subscript operator [] can be used to address the ele-
ments of an array. If v is an array and i is an integer, then
v[i] denotes the element with index i in the array. In more
general terms, one of the two operands of the operator []
must be a pointer to an object (e.g., an array name), and the
other must be an integer. An expression of the form x[i] is
equivalent to (*(x+(i))). For example:

float a[10], *pa; // An array and a pointer.
pa = a; // Let pa point to a[0].

Since pa points to a[0], pa[3] is equivalent to a[3] or *(a+3).

Table 14. Memory accessing operators

Operator Meaning Example Result

& Address of &x A constant pointer to x

* Indirection *p The object (or function) pointed to by p

[] Array element x[i] *(x+i), the element with index i in
the array x

. Member of a
structure or union

s.x The member named x in the structure
or union s

-> Member of a
structure or union

p->x The member named x in the structure
or union pointed to by p

Expressions and Operators | 27

The operators . and -> designate a member of a structure or
union. The left operand of the dot operator must have a
structure or union type. The left operand of the arrow opera-
tor is a pointer to a structure or union. In both cases, the
right operand is the name of a member of the type. The result
has the type and value of the designated member.

If p is a pointer to a structure or union and x is the name of a
member, then p->x is equivalent to (*p).x, and yields the
member x of the structure (or union) to which p points.

The operators . and ->, like [], have the highest precedence,
so that an expression such as ++p->x is equivalent to ++(p->x).

Other Operators
The operators in Table 15 do not belong to any of the cate-
gories described so far.

A function call consists of a pointer to a function (such as a
function name) followed by parentheses () containing the
argument list, which may be empty.

The cast operator can only be used on operands with scalar
types! An expression of the form (type)x yields the value of
the operand x with the type specified in the parentheses.

Table 15. Other operators

Operator Meaning Example Result

() Function call pow(x,y) Execute the function with the
arguments x and y

(type) Cast (long)x The value ofxwith the specified
type

sizeof Size in bytes sizeof(x) The number of bytes occupied
by x

?: Conditional evaluation x?y:z If x is not equal to 0, then y,
otherwise z

, Sequence operator x,y Evaluate x first, then y

28 | C Pocket Reference

The operand of the sizeof operator is either a type name in
parentheses or any expression that does not have a function
type. The sizeof operator yields the number of bytes
required to store an object of the specified type, or the type
of the expression. The result is a constant of type size_t.

The conditional operator ?: forms a conditional expression.
In an expression of the form x?y:z, the left operand x is eval-
uated first. If the result is not equal to 0 (in other words, if x
is “true”), then the second operand y is evaluated, and the
expression yields the value of y. However, if x is equal to 0
(“false”), then the third operand z is evaluated, and the
expression yields the value of z.

The first operand can have any scalar type. If the second and
third operands do not have the same type, then a type con-
version is performed. The type to which both can be con-
verted is the type of the result. The following types are
permissible for the second and third operands:

• Two operands with arithmetic types.

• Two operands with the same structure or union type, or
the type void.

• Two pointers, both of which point to objects of the same
type, unless one of them is the constant NULL. If one
operand is an object pointer, the other may be a pointer
to void.

The sequence or comma operator , has two operands: first
the left operand is evaluated, then the right. The result has
the type and value of the right operand. Note that a comma
in a list of initializations or arguments is not an operator, but
simply a punctuation mark!

Alternative notation for operators

The header file iso646.h defines symbolic constants that can
be used as synonyms for certain operators, as listed in
Table 16.

Type Conversions | 29

Type Conversions
A type conversion yields the value of an expression in a new
type. Conversion can be performed only on scalar types, i.e.,
arithmetic types and pointers.

A type conversion always conserves the original value, if the
new type is capable of representing it. Floating-point num-
bers may be rounded on conversion from double to float, for
example.

Type conversions can be implicit—i.e., performed by the
compiler automatically—or explicit, through the use of the
cast operator. It is considered good programming style to use
the cast operator whenever type conversions are necessary.
This makes the type conversion explicit, and avoids com-
piler warnings.

Integer Promotion
Operands of the types _Bool, char, unsigned char, short, and
unsigned short, as well as bit-fields, can be used in expres-
sions wherever operands of type int or unsigned int are per-
missible. In such cases, integer promotion is performed on the
operands: they are automatically converted to int or
unsigned int. Such operands are converted to unsigned int
only if the type int cannot represent all values of the original
type.

Table 16. Symbolic constants for operators

Constant Meaning Constant Meaning Constant Meaning

and && bitand & and_eq &=

or || bitor | or_eq |=

not ! xor ^ xor_eq ^=

compl ~ not_eq !=

30 | C Pocket Reference

Thus C always “expects” values that have at least type int. If
c is a variable of type char, then its value in the expression:

 c + '0'

is promoted to int before the addition takes place.

Usual Arithmetic Conversions
The operands of a binary operator may have different arith-
metic types. In this case, the usual arithmetic conversions are
implicitly performed to cast their values in a common type.
However, the usual arithmetic conversions are not per-
formed for the assignment operators, nor for the logical oper-
ators && and ||.

If operands still have different types after integer promotion,
they are converted to the type that appears highest in the
hierarchy shown in Figure 4. The result of the operation also
has this type.

When one complex floating type is converted to another,
both the type of the real part and the type of the imaginary
part are converted according to the rules applicable to the
corresponding real floating types.

Type Conversions in Assignments and
Pointers

A simple assignment may also involve different arithmetic
types. In this case, the value of the right operand is always
converted to the type of the left operand.

In a compound assignment, the usual arithmetic conversions
are performed for the arithmetic operation. Then any further
type conversion takes place as for a simple assignment.

A pointer to void can be converted to any other object
pointer. An object pointer can also be converted into a
pointer to void. The address it designates—its value—
remains unchanged.

Statements | 31

Statements
A statement specifies an action to be performed, such as an
arithmetic operation or a function call. Many statements
serve to control the flow of a program by defining loops and
branches. Statements are processed one after another in
sequence, except where such control statements result in
jumps.

Every statement that is not a block is terminated by a
semicolon.

Figure 4. Arithmetic type promotion hierarchy

int

unsigned int

long

unsigned long

long long

unsigned long long

float

double

long double

Not applicable if int is
equivalent to long

32 | C Pocket Reference

Block and Expression Statements
A block, also called a compound statement, groups a number
of statements together into one statement. A block can also
contain declarations.

The syntax for a block is:

{[list of declarations][list of statements]}

Here is an example of a block:

{ int i = 0; /* Declarations */
 static long a;
 extern long max;

 ++a; /* Statements */
 if(a >= max)
 { . . . } /* A nested block */
 . . .
}

The declarations in a block normally precede the statements.
However, ANSI C99 permits free placement of declarations.

New blocks can occur anywhere within a function block.
Usually a block is formed wherever the syntax calls for a
statement, but the program requires several statements. This
is the case, for example, when more than one statement is to
be repeated in a loop.

An expression statement is an expression followed by a semi-
colon. The syntax is:

[expression] ;

Here is an example of an expression statement:

 y = x; // Assignment

The expression—anassignment or function call, for exam-
ple—is evaluated for its side effects. The type and value of
the expression are discarded.

A statement consisting only of a semicolon is called an empty
statement, and does not peform any operation. For example:

if ... else | 33

for (i = 0; str[i] != '\0'; ++i)
 ; // Empty statement

Jumps
The following statements can be used to control the pro-
gram flow:

• Selection statements: if ... else or switch

• Loops: while, do ... while or for

• Unconditional jumps: goto, continue, break or return

if ... else

The if statement creates a conditional jump.

Syntax: if (expression) statement1 [else statement2]

The expression must have a scalar type. First, the if statement’s
controlling expression is evaluated. If the result is not equal to 0—
in other words, if the expression yields “true”—then statement1 is
executed. Otherwise, if else is present, statement2 is executed.

Example:

if (x > y) max = x; // Assign the greater of x and y to
else max = y; // the variable max.

The use of else is optional. If the value of the controlling expres-
sion is 0, or “false”, and else is omitted, then the program
execution continues with the next statement.

If several if statements are nested, then an else clause always
belongs to the last if (in the given block nesting level) that does
not yet have an else clause. An else can be assigned to a different
if by creating explicit blocks.

Example:

if (n > 0)
{ if (n % 2 == 0)
 puts("n is positive and even");
}
else // Belongs to first if
 puts("n is negative or zero");

34 | C Pocket Reference

switch

In a switch statement, the value of the switch expression is
compared to the constants associated with case labels. If the
expression evaluates to the constant associated with a case label,
program execution continues at the matching label. If no
matching label is present, program execution branches to the
default label if present; otherwise execution continues with the
statement following the switch statement.

Syntax: switch (expression) statement

The expression is an integer expression and statement is a block
statement with case labels and at most one default label. Every
case label has the form case const:, where const is a constant
integer expression. All case constants must be different from one
another.

Example:

switch(command) // Query a command obtained
{ // by user input in a menu,
 // for example.
 case 'a':
 case 'A': action1(); // Carry out action 1,
 break; // then quit the switch.
 case 'b':
 case 'B': action2(); // Carry out action 2,
 break; // then quit the switch.
 default: putchar('\a'); // On any other "command":
 // alert.
}

After the jump from the switch to a label, program execution
continues sequentially, regardless of other labels. The break state-
ment can be used to exit the switch block at any time. A break is
thus necessary if the statements following other case labels are not
to be executed.

Integer promotion is applied to the switch expression. The case
constants are then converted to the resulting type of the switch
expression.

do ... while | 35

Loops
A loop consists of a statement or block, called the loop
body, that is executed several times, depending on a given
condition. C offers three statements to construct loops:
while, do ... while, and for.

In each of these loop statements, the number of loop itera-
tions performed is determined by a controlling expression.
This is an expression of a scalar type, i.e., an arithmetic
expression or a pointer. The expression is interpreted as
“true” if its value is not equal to 0; otherwise it is considered
“false”.

Syntactically, the loop body consists of one statement. If sev-
eral statements are required, they are grouped in a block.

while

The while statement is a “top-driven” loop: first the loop condi-
tion (i.e., the controlling expression) is evaluated. If it yields
“true”, the loop body is executed, and then the controlling expres-
sion is evaluated again. If it is false, program execution continues
with the statement following the loop body.

Syntax: while (expression) statement

Example:

s = str; // Let the char pointer s
while(*s != '\0') // point to the end of str
 ++s;

do ... while

The do ... while statement is a “bottom-driven” loop: first the
body of the loop is executed, then the controlling expression is
evaluated. This is repeated until the controlling expression is
“false”, or 0.

36 | C Pocket Reference

The key difference from a while statement is that a do ... while
loop body is always executed at least once. A while loop may not
execute at all, because its expression could be false to begin with.

Syntax: do statement while (expression) ;

Example:

i = 0;
do // Copy the string str1
 str2[i] = str1[i]; // to string str2
while (str1[i++] != '\0');

for

A typical for loop uses a control variable and performs the
following actions on it:

1. Initialization (once before beginning the loop)

2. Tests the controlling expression

3. Makes adjustments (such as incrementation) at the end of
each loop iteration

The three expressions in the head of the for loop define these
three actions.

Syntax:

for ([expression1]; [expression2]; [expression3])
statement

expression1 and expression3 can be any expressions. Expression2
is the controlling expression, and hence must have a scalar type.
Any of these expressions can be omitted. If expression2 is
omitted, the loop body is executed unconditionally. In ANSI C99,
expression1 may also be a declaration. The scope of the variable
declared is then limited to the for loop.

Example:

for (int i = DELAY; i > 0; --i) // Wait a little
 ;

Except for the scope of the variable i, this for loop is equivalent
to the following while loop:

continue | 37

int i = DELAY; // Initialize
while(i > 0) // Test the controlling expression
 --i; // Adjust

Unconditional Jumps

goto

The goto statement jumps to any point within a function. The
destination of the jump is specified by the name of a label.

Syntax: goto label_name;

A label is a name followed by a colon that appears before any
statement.

Example:

for (...) // Jump out of
 for (...) // nested loops.
 if (error)
 goto handle_error;
 ...
 handle_error: // Error handling here
 ...

The only restriction is that the goto statement and the label must
be contained in the same function. Nonetheless, the goto state-
ment should never be used to jump into a block from outside it.

continue

The continue statement can only be used within the body of a
loop. It jumps over the remainder of the loop body. Thus in a
while or do ... while loop, it jumps to the next test of the
controlling expression, and in a for loop it jumps to the evalua-
tion of the per-iteration adjustment expression.

Syntax: continue;

Example:

for (i = -10; i < 10; ++i)
{ ...

38 | C Pocket Reference

 if (i == 0) continue; // Skip the value 0
 ...
}

break

The break statement jumps immediately to the statement after the
end of a loop or switch statement. This provides a way to end
execution of a loop at any point in the loop body.

Syntax: break;

Example:

while (1)
{ ...
 if (command == ESC) break; // Exit the loop
 ...
}

return

The return statement ends the execution of the current function
and returns control to the caller. The value of the expression in
the return statement is returned to the caller as the return value of
the function.

Syntax: return expression;

Example:

int max(int a, int b) // The maximum of a and b
{ return (a>b ? a : b); }

Any number of return statements can appear in a function.

The value of the return expression is converted to the type of the
function if necessary.

The expression in the return statement can be omitted. This only
makes sense in functions of type void, however—in which case
the entire return statement can also be omitted. Then the func-
tion returns control to the caller at the end of the function block.

Declarations | 39

Declarations
A declaration determines the interpretation and properties of
one or more identifiers. A declaration that allocates storage
space for an object or a function is a definition. In C, an
object is a data storage region that contains constant or vari-
able values. The term “object” is thus somewhat more gen-
eral than the term “variable.”

In the source file, declarations can appear at the beginning of
a block, such as a function block, or outside of all functions.
Declarations that do not allocate storage space, such as func-
tion prototypes or type definitions, are normally placed in a
header file.

ANSI C99 allows declarations and statements to appear in
any order within a block.

General Syntax and Examples
The general syntax of a declaration is as follows:

[storage class] type D1 [, D2, ...];

storage class
One of the storage class specifiers extern, static, auto, or
register.

type
A basic type, or one of the following type specifiers: void,
enum type (enumeration), struct or union type, or
typedef name.

type may also contain type qualifiers, such as const.

D1 [, D2,...]
A list of declarators. A declarator contains at least one
identifier, such as a variable name.

Some examples are:

char letter;
int i, j, k;
static double rate, price;
extern char flag;

40 | C Pocket Reference

Variables can be initialized—that is, assigned an initial
value—in the declaration. Variable and function declara-
tions are described in detail in the sections that follow.

Complex Declarations
If a declarator contains only one identifier, with or without
an initialization, the declaration is called a simple declara-
tion. In a complex declaration, the declarator also contains
additional type information. This is necessary in declara-
tions of pointers, arrays, and functions. Such declarations use
the three operators, shown in Table 17.

The operators in Table 17 have the same precedence in dec-
larations as in expressions. Parentheses can also be used to
group operands.

Complex declarators are always interpreted beginning with
the identifier being declared. Then the following steps are
repeated until all operators are resolved:

1. Any pair of parentheses () or square brackets [] appear-
ing to the right is interpreted.

2. If there are none, then any asterisk appearing to the left is
interpreted.

For example:

char *strptr[100];

This declaration identifies strptr as an array. The array’s
100 elements are pointers to char.

Table 17. Operators for complex declarations

Operator Meaning

* Pointer to

[] Array of element type

() Function returning value of type

Variables | 41

Variables
Every variable must be declared before it can be used. The
declaration determines the variable’s type, its storage class,
and possibly its initial value. The type of a variable deter-
mines how much space it occupies in storage and how the bit
pattern it stores is interpreted. For example:

float dollars = 2.5F; // a variable of type float

The variable dollars designates a region in memory with a
size of 4 bytes. The contents of these four bytes are inter-
preted as a floating-point number, and initialized with the
value 2.5.

Storage Classes
The storage class of a variable determines its scope, its stor-
age duration, and its linkage. The scope can be either block or
file (see “Categories and Scope of Identifiers,” earlier in this
book). Variables also have one of two storage durations:

Static storage duration
The variable is generated and initialized once, before the
program begins. It exists continuously throughout the
execution of the program.

Automatic storage duration
The variable is generated anew each time the program
flow enters the block in which it is defined. When the
block is terminated, the memory occupied by the vari-
able is freed.

The storage class of a variable is determined by the position
of its declaration in the source file and by the storage class
specifier, if any. A declaration may contain no more than one
storage class specifier. Table 18 lists the valid storage class
specifiers.

42 | C Pocket Reference

Table 19 illustrates the possible storage classes and their
effect on the scope and the storage duration of variables.

Initialization
Variables can be initialized (assigned an initial value) in their
declaration. The initializer consists of an equal sign followed
by a constant expression. Some examples are:

int index = 0, max = 99, *intptr = NULL;
static char message[20] = "Example!";

Variables are not initialized in declarations that do not cause
an object to be created, such as function prototypes and dec-
larations that refer to external variable definitions.

Table 18. The storage class specifiers

Specifier Meaning

auto Variables declared with the storage class specifier auto have automatic
storage duration. The specifier auto is applicable only to variables that
are declared within a function. Because the automatic storage class is
the default for such variables, the specifier auto is rarely used.

register The storage class specifierregister instructs the compiler to store the
variable in a CPU register if possible. As a result, the address operator (&)
cannot be used with a register variable. In all other respects,
however, register variables are treated the same as auto variables.

static Variables declared as static always have static storage duration. The
storage class specifier static is used to declare static variables with a
limited scope.

extern The specifier extern is used to declare variables with static storage
duration that can be used throughout the program.

Table 19. Storage class, scope, and storage duration of variables

Position of the declaration Storage class specifier Scope Storage duration

Outside all functions none, extern,
static

File Static

Within a function none, auto,
register

Block Automatic

Within a function extern, static Block Static

Derived Types | 43

Every initialization is subject to the following rules:

1. A variable declaration with an initializer is always a defi-
nition. This means that storage is allocated for the vari-
able.

2. A variable with static storage duration can only be initial-
ized with a value that can be calculated at the time of
compiling. Hence the initial value must be a constant
expression.

3. For declarations without an initializer: variables with
static storage duration are implicitly initialized with
NULL (all bytes have the value 0); the initial value of all
other variables is undefined!

The type conversion rules for simple assignments are also
applied on initialization.

Derived Types
A programmer can also define new types, including enumer-
ated types and derived types. Derived types include pointers,
arrays, structures, and unions.

The basic types and the enumerated types are collectively
called the arithmetic types. The arithmetic types and the
pointer types in turn make up the scalar types. The array and
structure types are known collectively as the aggregate types.

Enumeration Types
Enumeration types are used to define variables that can only
be assigned certain discrete integer values throughout the
program. The possible values and names for them are
defined in an enumeration. The type specifier begins with the
keyword enum; for example:

enum toggle { OFF, ON, NO = 0, YES };

44 | C Pocket Reference

The list of enumerators inside the braces defines the new
enumeration type. The identifier toggle is the tag of this enu-
meration. This enumeration defines the identifiers in the list
(OFF, ON, NO, and YES) as constants with type int.

The value of each identifier in the list may be determined
explicitly, as in NO = 0 in the example above. Identifiers for
which no explicit value is specified are assigned a value auto-
matically based on their position in the list, as follows: An
enumerator without an explicit value has the value 0 if it is
the first in the list; otherwise its value is 1 greater than that of
the preceding enumerator. Thus in the example above, the
constants OFF and NO have the value 0, while ON and YES have
the value 1.

Once an enumeration type has been defined, variables with
the type can be declared within its scope. For example:

enum toggle t1, t2 = ON;

This declaration defines t1 and t2 as variables with type enum
toggle, and also initializes t2 with the value ON, or 1.

Following is an enumeration without a tag:

enum { black, blue, green, cyan, red, magenta, white };

As this example illustrates, the definition of an enumeration
does not necessarily include a tag. In this case, the enumera-
tion type cannot be used to declare variables, but the enu-
meration constants can be used to designate a set of discrete
values. This technique can be used as an alternative to the
#define directive. The constants in the example above have
the following values: black = 0, blue = 1, ... , white = 6.

Variables with an enumeration type can generally be used in
a C program—in comparative or arithmetic expressions, for
example—as ordinary int variables.

Derived Types | 45

Structures, Unions, and Bit-Fields
Different data items that make up a logical unit are generally
grouped together in a record. The structure of a record—i.e.,
the names, types, and order of its components—is repre-
sented in C by a structure type.

The components of a record are called the members of the
structure. Each member can be of any type. The type speci-
fier begins with the keyword struct; for example:

struct article { char name[40];
 int quantity;
 double price;
 };

This example declares a structure type with three members.
The identifier article is the tag of the structure, and name,
quantity, and price are the names of its members. Within
the scope of a structure declaration, variables can be declared
with the structure type:

struct article a1, a2, *pArticle, arrArticle[100];

a1 and a2 are variables of type struct article, and pArticle
is a pointer to an object of type struct article. The array
arrArticle has 100 elements of type struct article.

Structure variables can also be declared simultaneously with
the structure type definition. If no further reference is made
to a structure type, then its declaration need not include a
tag. For example:

struct {unsigned char character, attribute;}
xchar, xstr[100];

The structure type defined here has the members character
and attribute, both of which have the type unsigned char.
The variable xchar and the elements of the array xstr have
the type of the new tagless structure.

The members of a structure variable are located in memory
in order of their declaration within the structure. The address

46 | C Pocket Reference

of the first member is identical to the address of the entire
structure. The addresses of the other members and the total
storage space required by the structure may vary, however,
since the compiler can insert unnamed gaps between the
individual members for the sake of optimization. For this
reason the storage size of a structure should always be
obtained using the sizeof operator.

The macro offsetof, defined in the header file stddef.h, can
be used to obtain the location of a member within a struc-
ture. The expression:

offsetof(structure_type, member)

has the type size_t, and yields the distance in bytes between
the beginning of the structure and member.

Structure variables can be initialized by an initialization list
containing a value for each member:

struct article flower = // Declare and initialize the
 { "rose", 7, 2.49 }; // structure variable flower

A structure variable with automatic storage duration can also
be initialized with the value of an existing structure variable.
The assignment operator can be used on variables of the
same structure type. For example:

arrArticle[0] = flower;

This operation copies the value of each member of flower to
the corresponding member of arrArticle[0].

A specific structure member can be accessed by means of the
dot operator, which has a structure variable and the name of
a member as its operands:

 flower.name // The array 'name'
 flower.price // The double variable 'price'

Efficient data handling often requires the use of pointers to
structures. The arrow operator provides convenient access to
a member of a structure identified by a pointer. The left

Derived Types | 47

operand of the arrow operator is a pointer to a structure.
Some examples follow:

pArticle = &flower; // Let pArticle point to flower
pArticle->quantity // Access members of flower
pArticle->price // using the pointer pArticle

A structure cannot have itself as a member. Recursive struc-
tures can be defined, however, by means of members that are
pointers to the structure’s own type. Such recursive struc-
tures are used to implement linked lists and binary trees, for
example.

Unions

A union permits references to the same location in memory
to have different types. The declaration of a union differs
from that of a structure only in the keyword union:

union number {long n; double x;};

This declaration creates a new union type with the tag number
and the two members n and x.

Unlike the members of a structure, all the members of a
union begin at the same address! Hence the size of a union is
that of its largest member. According to the example above, a
variable of type union number occupies 8 bytes.

Once a union type has been defined, variables of that type
can be declared. Thus:

union number nx[10];

declares an array nx with ten elements of type union number.
At any given time, each such element contains either a long
or a double value. The members of a union can be accessed in
the same ways as structure members. For example:

nx[0].x = 1.234; // Assign a double value to nx[0]

Like structures, union variables are initialized by an initial-
izer list. For a union, however, the list contains only one
initializer. If no union member is explicitly designated, the

48 | C Pocket Reference

first member named in the union type declaration is
initialized:

union number length = { 100L };

After this declaration, length.n has the value 100.

Bit-fields

Members of structures or unions can also be bit-fields. Bit-
fields are integers which consist of a defined number of bits.
The declaration of a bit-field has the form:

type [identifier] : width;

where type is either unsigned int or signed int, identifier
is the optional name of the bit-field, and width is the number
of bits occupied by the bit-field in memory.

A bit-field is normally stored in a machine word that is a
storage unit of length sizeof(int). The width of a bit-field
cannot be greater than that of a machine word. If a smaller
bit-field leaves sufficient room, subsequent bit-fields may be
packed into the same storage unit. A bit-field with width zero
is a special case, and indicates that the subsequent bit-field is
to be stored in a new storage unit regardless of whether
there’s room in the current storage unit. Here’s an example
of a structure made up of bit fields:

 struct { unsigned int b0_2 : 3;
 signed int b3_7 : 5;
 unsigned int : 7;
 unsigned int b15 : 1;
 } var;

The structure variable var occupies at least two bytes, or 16
bits. It is divided into four bit-fields: var.b0_2 occupies the
lowest three bits, var.b3_7 occupies the next five bits, and
var.b15 occupies the highest bit. The third member has no
name, and only serves to define a gap of seven bits, as shown
in Figure 5.

Derived Types | 49

Bit-fields with the type unsigned int are interpreted as
unsigned. Bit-fields of type signed int can have negative
values in two’s-complement encoding. In the example
above, var.b0_2 can hold values in the range from 0 to 7,
and var.b3_7 can take values in the range from –16 to 15.

Bit-fields also differ from ordinary integer variables in the fol-
lowing ways:

• The address operator (&) cannot be applied to bit-fields
(but it can be applied to a structure variable that con-
tains bit-fields).

• Some uses of bit-fields may lead to portability problems,
since the interpretation of the bits within a word can dif-
fer from one machine to another.

Arrays
Arrays are used to manage large numbers of objects of the
same type. Arrays in C can have elements of any type except
a function type. The definition of an array specifies the array
name, the type, and, optionally, the number of array ele-
ments. For example:

 char line[81];

The array line consists of 81 elements with the type char.
The variable line itself has the derived type “array of char”
(or “char array”).

In a statically defined array, the number of array elements
(i.e., the length of the array) must be a constant expression.
In ANSI C99, any integer expression with a positive value
can be used to specify the length of a non-static array with

Figure 5. Bit assignments in the example struct

b15 (not used) b3_7 b0_2

Bit position: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

50 | C Pocket Reference

block scope. This is also referred to as a variable-length
array.

An array always occupies a continuous location in memory.
The size of an array is thus the number of elements times the
size of the element type:

sizeof(line) == 81 * sizeof(char) == 81 bytes

The individual array elements can be accessed using an
index. In C, the first element of an array has the index 0.
Thus the 81 elements of the array line are line[0], line[1],
... , line[80].

Any integer expression can be used as an index. It is up to
the programmer to ensure that the value of the index lies
within the valid range for the given array.

A string is a sequence of consecutive elements of type char
that ends with the null character, '\0'. The length of the
string is the number of characters excluding the string termi-
nator '\0'. A string is stored in a char array, which must be
at least one byte longer than the string.

A wide string consists of characters of type wchar_t and is ter-
minated by the wide null character, L'\0'. The length of a
wide string is the number of wchar_t characters in the string,
excluding the wide string terminator. For example:

 wchar_t wstr[20] = L"Mister Fang"; // length: 11
 // wide characters

A multi-dimensional array in C is an array whose elements
are themselves arrays. For example:

 short point[50][20][10];

The three-dimensional array point consists of 50 elements
that are two-dimensional arrays. The declaration above
defines a total of 50*20*10 = 10,000 elements of type short,
each of which is uniquely identified by three indices:

point[0][0][9] = 7; // Assign the value 7 to the "point"
 // with the "coordinates" (0,0,9).

Derived Types | 51

Two-dimensional arrays, also called matrices, are the most
common multi-dimensional arrays. The elements of a matrix
can be thought of as being arranged in rows (first index) and
columns (second index).

Arrays in C are closely related to pointers: in almost all
expressions, the name of an array is converted to a pointer to
the first element of the array. The sizeof operator is an
exception, however: if its operand is an array, it yields the
number of bytes occupied, not by a pointer, but by the array
itself. After the declaration:

char msg[] = "Hello, world!";

the array name msg points to the character 'H'. In other words,
msg is equivalent to &msg[0]. Thus in a statement such as:

puts(msg); // Print string to display

only the address of the beginning of the string is passed to
the function puts(). Internally, the function processes the
characters in the string until it encounters the terminator
character '\0'.

An array is initialized by an initialization list containing a
constant initial value for each of the individual array ele-
ments:

double x[3] = { 0.0, 0.5, 1.0 };

After this definition, x[0] has the value 0.0, x[1] the value 0.5,
and x[2] the value 1.0. If the length of the array is greater
than the number of values in the list, then all remaining array
elements are initialized with 0. If the initialization list is longer
than the array, the redundant values are ignored.

The length of the array need not be explicitly specified,
however:

double x[] = { 0.0, 0.5, 1.0 };

In this definition, the length of the array is determined by the
number of values in the initialization list.

52 | C Pocket Reference

A char array can be initialized by a string literal:

char str[] = "abc";

This definition allocates and initializes an array of four bytes,
and is equivalent to:

char str[] = { 'a', 'b', 'c', '\0' } ;

In the initialization of a multi-dimensional array, the magni-
tude of all dimensions except the first must be specified. In
the case of a two-dimensional array, for example, the num-
ber of rows can be omitted. For example:

char error_msg[][40] = { "Error opening file!",
 "Error reading file!",
 "Error writing to file!"};

The array error_msg consists of three rows, each of which
contains a string.

Pointers
A pointer represents the address and type of a variable or a
function. In other words, for a variable x, &x is a pointer to x.

A pointer refers to a location in memory, and its type indi-
cates how the data at this location is to be interpreted. Thus
the pointer types are called pointer to char, pointer to int,
and so on, or for short, char pointer, int pointer, etc.

Array names and expressions such as &x are address con-
stants or constant pointers, and cannot be changed. Pointer
variables, on the other hand, store the address of the object
to which they refer, which address you may change. A
pointer variable is declared by an asterisk (*) prefixed to the
identifier. For example:

float x, y, *pFloat;
pFloat = &x; // Let pFloat point to x.

After this declaration, x and y are variables of type float, and
pFloat is a variable of type float * (pronounced “pointer to
float”). After the assignment operation, the value of pFloat
is the address of x.

Derived Types | 53

The indirection operator * is used to access data by means of
pointers. If ptr is a pointer, for example, then *ptr is the
object to which ptr points. For example:

y = *pFloat; // equivalent to y = x;

As long as pFloat points to x, the expression *pFloat can be
used in place of the variable x. Of course, the indirection
operator * must only be used with a pointer which contains a
valid address.

A pointer with the value 0 is called a null pointer. Null point-
ers have a special significance in C. Because all objects and
functions have non-zero addresses, a null pointer always rep-
resents an invalid address. Functions that return a pointer
can therefore return a null pointer to indicate a failure condi-
tion. The constant NULL is defined in stdio.h, stddef.h, and
other header files as a null pointer (i.e., a pointer with a value
of zero).

All object pointer variables have the same storage size,
regardless of their type. Two or four bytes are usually
required to store an address.

Parentheses are sometimes necessary in complex pointer dec-
larations. For example:

long arr[10]; // Array arr with ten elements
long (*pArr)[10]; // Pointer pArr to an array
 // of ten long elements

Without the parentheses, the declaration long *pArr[10];
would create an array of ten pointers to long. Parentheses are
always necessary in order to declare pointers to arrays or
functions.

Pointer arithmetic

Two arithmetic operations can be performed on pointers:

• An integer can be added to or subtracted from a pointer.

• One pointer can be subtracted from another of the same
type.

54 | C Pocket Reference

These operations are generally useful only when the pointers
point to elements of the same array. In arithmetic operations
on pointers, the size of the objects pointed to is automati-
cally taken into account. For example:

int a[3] = { 0, 10, 20 }; // An array with three elements
int *pa = a; // Let pa point to a[0]

Since pa points to a[0], the expression pa + 1 yields a pointer
to the next array element, a[1], which is sizeof(int) bytes
away in memory. Furthermore, because the array name a
likewise points to a[0], a+1 also yields a pointer to a[1].

Thus for any integer i, the following expressions are
equivalent:

&a[i] , a+i , pa+i // pointers to the i-th array element

By the same token, the following expressions are also
equivalent:

a[i] , *(a+i) , *(pa+i) , pa[i] // the i-th array element

Thus a pointer can be treated as an array name: pa[i] and
*(pa+i) are equivalent. Unlike the array name, however, pa is
a variable, not an address constant. For example:

pa = a+2; // Let pa point to a[2]
int n = pa-a; // n = 2

The subtraction of two pointers yields the number of array
elements between the pointers. For example, the expression
pa-a yields the integer value 2 if pa points to a[2]. This value
has the integer type ptrdiff_t, which is defined (usually as
int) in stddef.h.

The addition of two pointers is not a useful operation, and
hence is not permitted. It is possible, however, to compare
two pointers of the same type, as the following example
illustrates:

// Formatted output of the elements of an array
#define LEN 10
float numbers[LEN], *pn;
 . . .

Derived Types | 55

for (pn = numbers; pn < numbers+LEN; ++pn)
 printf("%16.4f", *pn);

Function pointers

The name of a function is a constant pointer to the function.
Its value is the address of the function’s machine code in
memory. For example, the name puts is a pointer to the func-
tion puts(), which outputs a string:

#include <stdio.h> // Include declaration of puts()
int (*pFunc)(const char*); // Pointer to a function
 . . . // whose parameter is a string
 // and whose return value
 // has type int
pFunc = puts; // Let pFunc point to puts()
(*pFunc)("Any questions?"); // Call puts() using the
 // pointer

Note that the first pair of parentheses is required in the dec-
laration of the variable pFunc. Without it, int *pFunc(const
char*); would declare pFunc as a function that returns a
pointer to int.

Type Qualifiers and Type Definitions
The type of an object can be qualified by the keywords const
and volatile in the declaration.

The type qualifier const indicates that the program can no
longer modify an object after its declaration. For example:

const double pi = 3.1415927;

After this declaration, a statement that modifies the object
pi, such as pi = pi+1;, is illegal and results in a compiler
error.

The type qualifier volatile indicates variables that can be
modified by processes other than the present program. Based
on this information, the compiler may refrain from optimiz-
ing access to the variable.

56 | C Pocket Reference

The type qualifiers volatile and const can also be combined:

extern const volatile unsigned clock_ticks;

After this declaration, clock_ticks cannot be modified by the
program, but may be modified by another process, such as a
hardware clock interrupt handler.

Type qualifiers are generally prefixed to the type specifier. In
pointer declarations, however, type qualifiers may be applied
both to the pointer itself and to the object it addresses. If the
type qualifier is to be applied to the pointer itself, it must be
placed immediately before the identifier.

The most common example of such a declaration is the
“pointer to a constant object.” Such a pointer may point to a
variable, but cannot be used to modify it. For this reason, such
pointers are also called “read-only” pointers. For example:

int var1 = 1, var2 = 2, *ptr;
const int cArr[2];
const int *ptrToConst;// "Read-only pointer" to int

The following statements are now permitted:

ptrToConst = &cArr[0]; // Change the value of
++ptrToConst; // the pointer variable
ptrToConst = &var1;
var2 = *ptrToConst; // "Read" access

The following statements are not permitted:

ptr = ptrToConst; // "Read-only" cannot be copied to
 // "read-write"
*ptrToConst = 5; // "Write" access not allowed!

restrict

ANSI C99 introduces the type qualifier restrict, which is only
applicable to pointers. If a pointer declared with the restrict
qualifier points to an object that is to be modified, then the object
can only be accessed using that pointer. This information allows
the compiler to generate optimized machine code. It is up to the
programmer to ensure that the restriction is respected!

Functions | 57

Example:

void *memcpy(void * restrict dest, // destination
 const void* restrict src, // source
 size_t n);

In using the standard function memcpy() to copy a memory block
of n bytes, the programmer must ensure that the source and desti-
nation blocks do not overlap.

typedef

The keyword typedef is used to give a type a new name.

Examples:

typedef unsigned char UCHAR;
typedef struct { double x, y } POINT;

After these type definitions, the identifier UCHAR can be used as an
abbreviation for the type unsigned char, and the identifier POINT
can be used to specify the given structure type.

Examples:

UCHAR c1, c2, tab[100];
POINT point, *pPoint;

In a typedef declaration, the identifier is declared as the new type
name. The same declaration without the typedef keyword would
declare a variable and not a type name.

Functions
Every C program contains at least the function main(), which
is the first function executed when the program starts. All
other functions are subroutines.

The definition of a function lists the statements it executes.
Before a function can be called in a given translation unit, it
must be declared. A function definition also serves as a decla-
ration of the function. The declaration of a function informs
the compiler of its return type. For example:

extern double pow();

58 | C Pocket Reference

Here pow() is declared as a function that returns a value with
type double. Because function names are external names by
default, the storage class specifier extern can also be omitted.

In ANSI C99, implicit function declarations are no longer
permitted. Formerly, calls to undeclared functions were
allowed, and the compiler implicitly assumed in such cases
that the function returned a value of type int.

The declaration of the function pow() in the example above
contains no information about the number and type of the
function’s parameters. Hence the compiler has no way of
testing whether the arguments supplied in a given function
call are compatible with the function’s parameters. This
missing information is supplied by a function prototype.

Function Prototypes
A function prototype is a declaration that indicates the types
of the function’s parameters as well as its return value. For
example:

double pow(double, double); // prototype of pow()

This prototype informs the compiler that the function pow()
expects two arguments of type double, and returns a result of
type double. Each parameter type may be followed by a
parameter name. This name has no more significance than a
comment, however, since its scope is limited to the function
prototype itself. For example:

double pow(double base, double exponent);

Functions that do not return any result are declared with the
type specifier void. For example:

void func1(char *str); // func1 expects one string
 // argument and has no return
 // value.

Functions with no parameters are declared with the type
specifier void in the parameter list:

Functions | 59

int func2(void); // func2 takes no arguments and
 // returns a value with type int.

Function declarations should always be in prototype form.
All standard C functions are declared in one (or more) of the
standard header files. For example, math.h contains the pro-
totypes of the mathematical functions, such as sin(), cos(),
pow(), etc., while stdio.h contains the prototypes of the stan-
dard input and output functions.

Function Definitions
The general form of a function definition is:

[storage_class] [type] name(
[parameter_list]) // function declarator
{
 /* declarations, statements */ // function body
}

storage_class
One of the storage class specifiers extern or static.
Because extern is the default storage class for functions,
most function definitions do not include a storage class
specifier.

type
The type of the function’s return value. This can be
either void or any other type, except an array.

name
The name of the function.

parameter_list
The declarations of the function’s parameters. If the
function has no parameters, the list is empty.

Here is one example of a function definition:

long sum(int arr[], int len)// Find the sum of the first
{ // len elements of the array arr
 int i;
 long result = 0;

60 | C Pocket Reference

 for(i = 0; i < len; ++i)
 result += (long)arr[i];
 return result;
}

Because by default function names are external names, the
functions of a program can be distributed among different
source files, and can appear in any sequence within a source
file.

Functions that are declared as static, however, can only be
called using their name in the same translation unit in which
they are defined. But it is not possible to define functions
with block scope—in other words, a function definition can-
not appear within another function.

The parameters of a function are ordinary variables whose
scope is limited to the function. When the function is called,
they are initialized with the values of the arguments received
from the caller.

The statements in the function body define what the function
does. When the flow of execution reaches a return state-
ment or the end of the function body, control returns to the
calling function.

A function that calls itself, directly or indirectly, is called
recursive. C permits the definition of recursive functions,
since variables with automatic storage class are created
anew—generally in stack memory—with each function call.

The function declarator shown above is in prototype style.
Today’s compilers still support the older Kernighan-Ritchie
style, however, in which the parameter identifiers and the
parameter type declarations are separate. For example:

long sum(arr, len) // Parameter identifier list
int arr[], len; // Parameter declarations
{ ... } // Function body

In ANSI C99, functions can also be defined as inline. The
inline function specifier instructs the compiler to optimize
the speed of the function call, generally by inserting the

Functions | 61

function’s machine code directly into the calling routine. The
inline keyword is prefixed to the definition of the function:

inline int max(int x, int y)
{ return (x >= y ? x : y); }

If an inline function contains too many statements, the com-
piler may ignore the inline specifier and generate a normal
function call.

An inline function must be defined in the same translation
unit in which it is called. In other words, the function body
must be visible when the inline “call” is compiled. It is there-
fore a good idea to define inline functions—unlike ordinary
functions—in a header file.

Inline functions are an alternative to macros with parame-
ters. In translating a macro, the preprocessor simply substi-
tutes text. An inline function, however, behaves like a
normal function—so that the compiler tests for compatible
arguments, for example—but without the jump to and from
another code location.

Function Calls
A function call is an expression whose value and type are
those of the function’s return value.

The number and the type of the arguments in a function call
must agree with the number and type of the parameters in
the function definition. Any expression, including constants
and arithmetic expressions, may be specified as an argument
in a function call. When the function is called, the value of
the argument is copied to the corresponding parameter of the
function! For example:

double x=0.5, y, pow(); // Declaration
y = pow(1.0 + x, 2.5); // Call to pow() yields
 // the double value (1.0+x)2.5

In other words, the arguments are passed to the function by
value. The function itself cannot modify the values of the

62 | C Pocket Reference

arguments in the calling function: it can only access its local
copy of the values.

In order for a function to modify the value of a variable
directly, the caller must give the function the address of the
variable as an argument. In other words, the variable must be
passed to the function by reference. Examples of functions
that accept arguments by reference include scanf(), time(),
and all functions that have an array as one of their parame-
ters. For example:

double swap(double *px, double *py) // Exchange values
 // of two variables
{ double z = *px; *px = *py; *py = z; }

The arguments of a function are subject to implicit type con-
version:

• If the function was declared in prototype form (as is usu-
ally the case), each argument is converted to the type of
the corresponding parameter, as for an assignment.

• If no prototype is present, integer promotion is per-
formed on each integer argument. Arguments of type
float are converted to double.

Functions with Variable Numbers of
Arguments
Functions that can be called with a variable number of argu-
ments always expect a fixed number of mandatory argu-
ments—at least one is required—and a variable number of
optional arguments. A well-known example is the function
printf(): the format string argument is mandatory, while all
other arguments are optional. Internally, printf() deter-
mines the number and type of the other arguments from the
information in the format string.

In the function declarator, optional arguments are indicated
by three dots (...). For example:

int printf(char *str, ...); // Prototype

Functions | 63

In the function definition, the optional arguments are
accessed through an object with the type va_list, which con-
tains the argument information. This type is defined in the
header file stdarg.h, along with the macros va_start, va_arg,
and va_end, which are used to manage the arguments.

In order to read the optional arguments, the function must
carry out the following steps:

1. Declare an object of type va_list. In the following exam-
ple, this object is named arglist.

2. Invoke the macro va_start to prepare the arglist object
to return the first optional argument. The parameters of
va_start are the arglist object and the name of the last
mandatory parameter.

3. Invoke the macro va_arg with the initialized arglist
object to obtain each of the optional arguments in
sequence. The second parameter of va_arg is the type of
the optional argument that is being obtained.

After each invocation of the va_arg macro, the arglist
object is prepared to deliver the first optional argument
that has not yet been read. The result of va_arg has the
type specified by the second argument.

4. After reading out the argument list, the function should
invoke the va_end macro before returning control to the
caller. The only parameter of va_end is the arglist
object.

Following is an example of a function, named max, that
accepts a variable number of arguments:

// Determine the maximum of a number of positive integers.
// Parameters: a variable number of positive values of
// type unsigned int. The last argument must be 0.
// Return value: the maximum of the arguments

#include <stdarg.h>
unsigned int max(unsigned int first, ...)
{
 unsigned int maxarg, arg;

64 | C Pocket Reference

 va_list arglist; // The optional-argument
 // list object
 va_start(arglist, first); // Set arglist to deliver

 // the first optional
 // argument
 arg = maxarg = first;
 while (arg != 0)
 { arg = va_arg(arglist, unsigned);// Get an argument
 if (arg > maxarg) maxarg = arg;
 }

 va_end(arglist); // Finished reading the
 // optional arguments
 return maxarg;
}

Linkage of Identifiers
An identifier that is declared more than once, whether in dif-
ferent scopes (in different files, for example) or in the same
scope, may refer to the same variable or function. Identifiers
must be “linked” in this way in order for a variable to be
used “globally,” across different source files, for example.

Each identifier has either external, internal, or no linkage.
These three kinds of linkage have the following significance:

External linkage
An identifier with external linkage represents the same
object or function throughout the entire program, i.e., in
all source files and libraries belonging to the program.
The identifier is made known to the linker.

When a second declaration of the same identifier with
external linkage occurs, the linker associates the identi-
fier with the same object or function. A declaration of an
existing external object is sometimes called a reference
declaration.

Internal linkage
An identifier with internal linkage represents the same
object or function within a given translation unit. The
linker has no information about identifiers with internal

Preprocessing Directives | 65

linkage. Thus they remain “internal” to the translation
unit.

No linkage
If an identifier has no linkage, then any further declara-
tion using the identifier declares something new, such as
a new variable or a new type.

The linkage of an identifier is determined by its storage class;
that is, by the position of the declaration and any storage
class specifier included in it. Only identifiers of variables and
functions can have internal or external linkage. All other
identifiers, and identifiers of variables with automatic stor-
age class, have no linkage. Table 20 summarizes this
information.

The form of external names (identifiers with external link-
age) is subject to restrictions, depending on the linker imple-
mentation: some linkers only recognize the first eight
characters of a name, and do not distinguish between upper-
and lower-case letters.

Preprocessing Directives
The C compiler preprocesses every source file before per-
forming the actual translation. The preprocessor removes
comments and replaces macros with their definitions.

Table 20. Linkage of identifiers

Linkage Identifiers with this linkage

External Names of variables either declared with the storage class specifierextern,
or declared outside of all functions and without a storage class specifier.
Names of functions defined without the specifier static.

Internal Names of functions and variables declared outside of all functions and with
the specifier static.

None All other identifiers, such as function parameters.

66 | C Pocket Reference

Every preprocessing directive appears on a line by itself,
beginning with the character #. If the directive is long, it can
be continued on the next line by inserting a backslash (\) as
the last character before the line break.

#define

The #define directive is used to define macros.

Syntax:

#define name[(parameter_list)] [replacement_text]

The preprocessor replaces each occurrence of name or
name(parameter_list) in the subsequent source code with
replacement_text.

Examples:

#define BUF_SIZE 512 // Symbolic constant
#define MAX(a,b) ((a) > (b) ? (a) : (b))

These directives define the macros BUF_SIZE and MAX. If the
replacement text is a constant expression, the macro is also called
a symbolic constant. Macros can also be nested; a macro, once
defined, can be used in another macro definition.

In the previous example, the parentheses are necessary in order
for the substitution to be performed correctly when MAX is used in
an expression, or when complex expressions replace the parame-
ters a and b. For example, the preprocessor replaces the macro
invocation:

result = 2 * MAX(x, y & 0xFF);

with:

result = 2 * ((x) > (y & 0xFF) ? (x) : (y & 0xFF));

The # Operator

In the macro replacement text, the parameters of the macro
may be preceded by the operator # (called the hash or string-
izing operator). In this case, the preprocessor sets the

#define | 67

corresponding argument in quotation marks, thus converting
it into a string.

Example:

#define print_int(i) printf("value " #i " = %d", i)

If x and y are variables with type int, then the statement:

print_int(x-y);

is replaced with:

printf("value ""x-y"" = %d", x-y);

Because consecutive string literals are concatenated, this is
equivalent to:

printf("value x-y = %d", x-y);

The ## Operator

If a macro parameter appears in the replacement text
preceded or followed by the operator ## (called the double-
hash or token-pasting operator), then the preprocessor concat-
enates the tokens to the left and right of the operator,
ignoring any spaces. If the resulting text also contains a macro
name, then macro replacement is performed once again.

Example:

#define show(var, num) \
 printf(#var #num " = %.1f\n", var ## num)

If the float variable x5 has the value 16.4, then the macro
invocation:

show(x, 5);

is replaced with:

printf("x" "5" " = %.1f\n", x5);
// Output: x5 = 16.4\n

68 | C Pocket Reference

#undef

The #undef directive cancels a macro definition. This is necessary
when the definition of a macro needs to be changed, or when a
function of the same name needs to be called.

Syntax: #undef name

No parameter list needs to be specified, even if the previously
defined macro has parameters.

Example:

#include <ctype.h>
#undef toupper
 . . .
c = toupper(c); // Call the function toupper()

#include

The #include directive instructs the preprocessor to insert the
contents of a specified file in the program at the point where the
#include directive appears.

Syntax:

#include <filename>
#include "filename"

If the filename is enclosed in angle brackets, the preprocessor only
searches for it in certain directories. These directories are usually
named in the environment variable INCLUDE.

If the filename is enclosed in quotation marks, the preprocessor
first looks for the file in the current working directory.

The filename may contain a directory path. In this case, the file is
only looked for in the specified directory.

The files named in include directives are generally “header” files
containing declarations and macro definitions for use in several
source files, and have names ending in .h. Such files may in turn
contain further #include directives.

In the following example, one file to be included is selected based
on the value of a symbolic constant:

#if, #elif, #else, #endif | 69

#include <stdio.h>
#include "project.h"

#if VERSION == 1
 #define MYPROJ_H "version1.h"
#else
 #define MYPROJ_H "version2.h"
#endif

#include MYPROJ_H

#if, #elif, #else, #endif

These directives are used to present source code to the compiler
only on certain conditions. In this way a different selection of
program statements can be compiled from one build to another.
This technique can be used to adapt a single program to a variety
of target systems, for example, without requiring modification of
the source code.

Syntax:

#if expression1
 [text1]
[#elif expression2
 text2]

 . . .
[#elif expression(n)
 text(n)]

[#else
 text(n+1)]

 #endif

Each #if directive may be followed by any number of #elif direc-
tives, and at most one #else directive. The conditional source
code section must be closed by an #endif directive.

The preprocessor evaluates expression1, expression2, etc. in
succession. At the first expression whose value is “true”, i.e., not
equal to 0, the conditional code is processed. If none of the
expressions is true, then the #else directive is processed, if
present.

70 | C Pocket Reference

expression1, expression2, etc. must be constant integer expres-
sions. The cast operator cannot be used in preprocessing
directives.

The conditional text consists of program code, including other
preprocessing directives and ordinary C statements. Conditional
text that the preprocessor skips over is effectively removed from
the program.

The defined operator

The defined operator can be used to verify whether a given macro
name is currently defined.

Syntax: defined (name)

The operator yields a non-zero value if a valid definition exists for
name; otherwise it yields the value 0. A macro name defined by a
#define directive remains defined until it is cancelled by an #undef
directive. A macro name is considered to be defined even if no
replacement text is specified after name in the #define directive.

The defined operator is typically used in #if and #elif directives:

#if defined(VERSION)
...
#endif

Unlike the #ifdef and #ifndef directives, the defined operator
yields a value that can be used in a preprocessor expression:

#if defined(VERSION) && defined(STATUS)
...
#endif

#ifdef and #ifndef

The #ifdef and #ifndef directives can be used to make program
text directly conditional upon whether a given macro name is
defined.

Syntax:

#ifdef name
#ifndef name

#line | 71

The #ifdef directive is “true” if name is defined, and the #ifndef
directive is “true” if name is not defined. Both require a closing
#endif directive.

The following two constructions are equivalent:

#ifdef VERSION
 ...
#endif

#if defined(VERSION)
 ...
#endif

#line

The compiler identifies errors it encounters during compilation by
the source filename and the line number in the file. The #line
directive can be used to change the filename and line numbering
in the source file itself.

Syntax: #line new_number ["filename"]

From this location in the file onward, lines are counted starting
from new_number. If filename is also specified, it becomes the new
filename indicated by the compiler in any error messages.

The new filename must be enclosed in quotation marks, and new_
number must be an integer constant.

Example:

#line 500 "my_prg.c"

The #line directive is typically used by program generators in
translating other kinds of code into a C program. In this way the
C compiler’s error messages can be made to refer to the appro-
priate line and filename in the original source code.

The current effective line number and filename are accessible
through the predefined macros __LINE__ and __FILE__.

Examples:

printf("Current source line number: %d\n", __LINE__);
printf ("Source file: %s\n", __FILE__);

72 | C Pocket Reference

#pragma

The #pragma directive is implementation-specific. It can be used to
define any preprocessor directives desired for a given compiler.

Syntax: #pragma command

Any compiler that does not recognize command simply ignores the
#pragma directive.

Example:

#pragma pack(1)

The Microsoft C compiler interprets this directive as an instruc-
tion to align the members of structures on byte boundaries, so
that no unnamed gaps occur. (Other pragmas supported by that
compiler are pack(2) and pack(4), for word and double-word
alignment.)

ANSI C99 introduces the standard pragmas CX_LIMITED_RANGE,
FENV_ACCESS, and FP_CONTRACT, which are described in the
upcoming section “Mathematical Functions.”

Predefined standard macros

There are eight predefined macros in C, whose names begin and
end with two underline characters. They are described in
Table 21.

Table 21. Predefined standard macros

Macro Replacement value

__LINE__ The number of the line (within the given source file) in
which the macro __LINE__ appears

__FILE__ The name of the source file in which the macro
__FILE__ appears

__func__ (*) The name of the function in which the macro __func__
appears

__DATE__ The date of compilation, in the format “Mmm dd yyyy”.
Example: “Dec 18 2002”

__TIME__ The time of compilation, in the format “hh:mm:ss”

__STDC__ The integer constant 1 if the compiler conforms to the
ANSI standard

Standard Header Files | 73

ANSI C99 distinguishes between “hosted” and “free-standing”
execution environments for C programs. Unlike the normal
“hosted” environment, a “freestanding” environment provides
only the capabilities of the standard library as declared in the
header files float.h, iso646.h, limits.h, stdarg.h, stdbool.h, and
stddef.h.

Standard Library
The remaining sections in this book describe the contents of
the ANSI C library. The standard functions, types, and mac-
ros are grouped according to their purpose and areas of
application. This arrangement makes it easy to find less well-
known functions and macros. Each section also supplies the
background information needed in order to make efficient
use of the library’s capabilities. New data types, functions,
and macros introduced in ANSI C99 are indicated by an
asterisk in parentheses (*).

Standard Header Files
All function prototypes, macros, and types in the ANSI
library are contained in one or more of the following stan-
dard header files:

__STD_HOSTED__ (*) The integer constant 1 if the current implementation is a
“hosted” implementation; otherwise 0

__STD_VERSION__
(*)

The integer constant 199901L if the implementation
conforms to C99, the ANSI C standard of January, 1999

assert.h inttypes.h(*) signal.h stdlib.h

complex.h(*) iso646.h(*) stdarg.h string.h

ctype.h limits.h stdbool.h(*) tgmath.h(*)

errno.h locale.h stddef.h time.h

fenv.h(*) math.h stdint.h(*) wchar.h(*)

float.h setjmp.h stdio.h wctype.h(*)

Table 21. Predefined standard macros (continued)

Macro Replacement value

74 | C Pocket Reference

Because a standard “function” may also be implemented as a
macro, your source files should contain no other declaration
of a function once the appropriate header file has been
included.

Table 22 describes some commonly used types. The table
also lists which header files define each type.

Input and Output
The ANSI library provides a suite of high-level functions to
manage all kinds of input and output, with the appropriate
buffering, as uniform data streams.

When a file is opened, for example, a new stream is created
along with a file pointer, which is a pointer to a structure of
type FILE that contains information about the stream. This
information includes the address of the buffer, the number of
bytes not yet read, and other information about the file itself.
The file pointer is used to identify the file in all subsequent
operations.

Devices such as the display are addressed in the same way as
files. When the program starts, three streams are open by
default, with the following file pointers:

Table 22. Commonly used types

Type Purpose Header files

size_t Used to express the size of an object as a number of
bytes (generally equivalent to unsigned int)

stddef.h,
stdio.h

wchar_t Used to hold multi-byte character codes, and large
enough to represent the codes of all extended
character sets

stdlib.h,
wchar.h(*)

wint_t(*) An integer type used to represent wide characters,
including the macro WEOF

wchar.h(*)

ptrdiff_t Used to represent the difference of two pointers
(usually equivalent to int)

stddef.h

Input and Output | 75

stdin
The standard input device

stdout
The standard output device

stderr
The standard output device for error messages

stdin is generally associated with the keyboard, while stdout
and stderr are associated with the display, unless redirec-
tion has been performed using the function freopen() or by
the environment in which the program is running.

There is no predefined file structure in C: every file is
assumed to contain simply a sequence of bytes. The internal
structure of a file is completely left up to the program that
uses it.

All read and write operations are applied at the current file
position, which is the position of the next character to be
read or written, and is always recorded in the FILE structure.
When the file is opened, the file position is 0. It is increased
by 1 with every character that is read or written. Random file
access is achieved by means of functions that adjust the cur-
rent file position.

In ANSI C99, characters in the extended character set can
also be written to files. Thus any file used in read or write
functions can be either byte-oriented or wide-oriented. After a
file is opened and before any read or write access takes place,
the file has no orientation. As soon as a byte input/output
function is performed on the file, it becomes byte-oriented. If
the first function that reads from or writes to the file is a
wide-character input or output function, the file becomes
wide-oriented. The function fwide() can also be used before
the first access function to set the file’s orientation, or to
obtain its orientation at any time.

Only wide characters can be written to a wide-oriented file.
The appropriate read and write functions thus perform

76 | C Pocket Reference

conversion between wide characters with type wchar_t and
the multibyte character encoding of the stream. For every
wide-oriented stream, the momentary multibyte character
parsing state is stored in an object with type mbstate_t. Byte
access to wide-oriented files, and wide-character access to
byte-oriented files, are not permitted.

Error Handling for Input/Output Functions
Errors on file access are indicated by the return value of the
file access function. When the end of a file is encountered by
a read function, for example, the symbolic constant EOF (for
byte-oriented files) or WEOF (for wide-oriented files) is
returned. If a read or write error has occurred, an error flag is
also set in the FILE structure.

Furthermore, in reading or writing wide-oriented streams,
errors can occur in the conversion between wide characters
of type wchar_t and multibyte characters in the stream. This
is the case if one of the conversion functions mbrtowc() and
wcrtomb() does not return a permissible value. The global
error variable errno then has the value EILSEQ (“error: illegal
sequence”).

General File Access Functions
The following functions, macros, and symbolic constants are
declared in the header file stdio.h. In the descriptions below,
fp designates the file pointer. Functions with type int return
0 to indicate success, or a value other than 0 in case of errors.

void clearerr(FILE *fp);
Clears the error and end-of-file flags.

int fclose(FILE *fp);
Closes the file.

int feof(FILE *fp);
Tests whether the end of the file has been reached.
Returns a value not equal to 0 if the end-of-file flag is set,
or 0 if it is not.

Input and Output | 77

int ferror(FILE *fp);
Tests whether an error occurred during file access.
Returns a value not equal to 0 if the error flag is set, or 0
if it is not.

int fflush(FILE *fp);
Causes any unwritten data in the file buffer to be written
to the file. Returns EOF if an error occurs, or 0 on success.

int fgetpos(FILE *fp, fpos_t *ppos);
Determines the current file position and copies it to the
variable addressed by ppos. The type fpos_t is generally
defined as long.

FILE *fopen(const char *name, const char *mode);
Opens the file name with the access mode mode. Possible
access mode strings are "r" (read), "r+" (read and write),
"w" (write), "w+" (write and read), "a" (append), and "a+"
(append and read). For modes "r" and "r+", the file must
already exist. Modes "w" and "w+" create a new file, or
erase the contents of an existing file. Text or binary access
mode can be specified by appending t or b to the mode
string. If neither is used, the file is opened in text mode.

The maximum length of a filename is the constant
FILENAME_MAX. The maximum number of files that can be
open simultaneously is FOPEN_MAX.

int fsetpos(FILE *fp, const fpos_t *ppos);
Sets the file position to the new value referenced by ppos.

long ftell(FILE *fp);
Returns the current file position.

FILE *freopen(const char *name, const char *mode,
 FILE *fp);

Closes and reopens the file name with the access mode
mode using the existing file pointer fp.

int fseek(FILE *fp, long offset, int origin);
Moves the file position to offset bytes from the begin-
ning of the file (if origin = SEEK_SET), or from the current

78 | C Pocket Reference

file position (if origin = SEEK_CUR), or from the end of the
file (if origin = SEEK_END). The constants SEEK_SET, SEEK_
CUR, and SEEK_END are usually defined as 0, 1, and 2.

void perror(const char *string);
After a system function call has resulted in an error, you
can use perror() to write the string pointed to by string
to stderr, followed by a colon and the appropriate sys-
tem error message.

int remove(const char *filename);
Makes the file named filename unavailable by that name.
If no other filenames are linked to the file, it is deleted.

int rename(const char *oldname, const char *newname);
Changes the name of the file whose name is addressed by
oldname to the string addressed by newname.

void rewind(FILE *fp);
Sets the file position to the beginning of the file, and
clears the end-of-file and error flags.

void setbuf(FILE *fp, char *buf);
Defines the array addressed by buf as the input/output
buffer for the file. The buffer must be an array whose size
is equal to the constant BUFSIZ. If buf is a null pointer,
then the input/output stream is not buffered.

int setvbuf(FILE *fp, char *buf, int mode, size_t sz);
Defines the array buf with length sz as the input/output
buffer for the file. The parameter mode is one of the follow-
ing constants: _IOFBF (full input/output buffering), _IOLBF
(line-wise input/output buffering), or _IONBF (no input/
output buffering). If buf is a null pointer, then a buffer of
size sz is dynamically allocated.

FILE *tmpfile(void);
Opens a temporary file in binary read/write mode. The
file is automatically deleted at the end of the program.
The program should be able to open at least TMP_MAX

Input and Output | 79

temporary files. The symbolic constant TMP_MAX is greater
than or equal to 25.

char *tmpnam(char *s);
Generates a unique filename that can be used to create a
temporary file. If s is a null pointer, the filename gener-
ated is stored in an internal static buffer. Otherwise, s
must point to a char array with a length of at least L_
tmpnam bytes, in which the function stores the new name.

File Input/Output Functions
The classic functions for reading from and writing to files are
declared in the header file stdio.h. In the descriptions that fol-
low in Table 23, fp designates the file pointer. Those func-
tions that have no parameter with the file pointer type read
from stdin or write to stdout.

Reading and writing characters and strings

For each of these input/output functions, there is also a cor-
responding function for wide-oriented access. The wide func-
tions are declared in the header file wchar.h(*). Their names
are formed with wc (for wide character) in place of c (for char-
acter), or with ws (for wide string) in place of s (for string).

Table 23. Character read and write functions

Purpose Functions

Write a character int fputc(int c, FILE *fp);
int putc(int c, FILE *fp);
int putchar(int c);

Read a character int fgetc(FILE *fp);
int getc(FILE *fp);
int getchar(void);

Put back a character int ungetc(int c, FILE *fp);

Write a line int fputs(const char *s, FILE *fp);
int puts(const char *s);

Read a line char *fgets(char *s, int n, FILE *fp);
char *gets(char *buffer);

80 | C Pocket Reference

Block read and write functions

The following file access functions can be used to read or
write a block of characters:

size_t fwrite(const void *buf, size_t sz, size_t n,
 FILE *fp);

Writes n objects of length sz from the buffer addressed
by buf to the file.

size_t fread(void *buffer, size_t sz, size_t n,
 FILE *fp);

Reads up to n objects of length sz from the file and cop-
ies them to the memory location pointed to by buf.

Both functions return the number of objects transferred. If
the return value is less than the argument n, then an error
occurred, or fread() encountered the end of the file.

Formatted output

The printf functions provide formatted output:

int printf(const char *format, ... /*arg1, ... , argn*/);
Writes the format string pointed to by format to the stan-
dard output stream, replacing conversion specifications
with values from the argument list arg1, ... , argn.

int fprintf(FILE *fp, const char *format, ...);
Like printf(), but writes the format string format to the
file indicated by the file pointer fp.

int vprintf(const char *format, va_list arg);
Like printf(), but with the variable argument list
replaced by an object of type va_list that has been ini-
tialized using the va_start macro.

int vfprintf(FILE *fp, const char *format, va_list arg);
Like fprintf(), but with the variable argument list
replaced by an object of type va_list that has been ini-
tialized using the va_start macro.

Input and Output | 81

All of the printf functions return the number of characters
written, or EOF if an error occurred.

In the following example, the function printf() is called with
one conversion specification:

printf("%+10.2f", sin(1.2));

The resulting output displays the signed value of sin(1.2) to
two decimal places, right-justified in a field 10 spaces wide.

The general format of the conversion specifications used in
the printf functions is as follows:

%[flags][field width][.precision]specifier

The flags consist of one or more of the characters +, ' '
(space), – , 0 , or #. Their meanings are:

+ The plus sign is prefixed to positive numbers.

' ' (space)
A leading space is prefixed to positive numbers.

 – The output is left-justified in the field.

 0 The field is filled with leading zeroes to the left of the
number.

 # Alternate conversion rules are used as follows: If
specifier is A(*), a(*), E, e, G, or g, floating-point num-
bers are formatted with a decimal point. If specifier is X,
x, or o, hexadecimal integers are formatted with the 0X or
0x prefix, and octal integers with the 0 prefix.

The field width is a positive integer that fixes the length of
the field occupied by the given conversion specification in
the output string. If the flags include a minus sign, the con-
verted value appears left-justified in the field; otherwise, it is
right-justified. The excess field length is filled with space
characters. If the output string is longer than the field width,
the field width is increased as necessary to print the string in
its entirety.

82 | C Pocket Reference

An asterisk (*) may also be specified for the field width. In
this case, the field width is determined by an additional argu-
ment of type int, which immediately precedes the argument
to be converted in the argument list.

.precision determines the number of decimal places printed
in the output of floating-point numbers, when specifier is f
or e. If specifier is g, .precision determines the number of
significant digits. Rounding is performed if necessary. For
floating-point numbers, the default value for .precision is 6.

For integers, .precision indicates the minimum number of
digits to be printed. Leading zeroes are prefixed as neces-
sary. For integers, the default value for .precision is 1.

If the argument to be converted is a string, then .precision
indicates the maximum number of characters of the string
that should appear.

specifier is the conversion specifier, indicating how the
given argument is to be interpreted and converted. Note that
specifier must correspond to the actual type of the argu-
ment to be converted. The possible conversion specifiers are
listed in Table 24.

Table 24. Conversion specifiers for formatted output

Specifier Argument types Output format

d, i int Decimal

u unsigned int Decimal

o unsigned int Octal

x unsigned int Hexadecimal with a, b, c, d, e, f

X unsigned int Hexadecimal with A, B, C, D, E, F

f float/double Floating-point number, decimal

e, E float/double Exponential notation, decimal

a, A float/double Exponential notation, hexadecimal(*)

g, G float/double Floating-point or exponential notation, whichever
is shorter

c char / int Single character

Input and Output | 83

The letter l (that’s an ell) can be prefixed to the c or s con-
version specifiers to indicate a wide character or a wide string.

The letters l or ll(*) can also be prefixed to the conversion
specifiers d , i , u , o , x , and X to indicate an argument of
type long or long long(*). Similarly, h or hh can be prefixed
to the same conversion specifiers to indicate an argument of
type short or char.

An argument of type long double can be converted by using
the prefix L with the conversion specifier f , e , E , g , G , a, or
A.

Furthermore, ANSI C99 has introduced the following exten-
sions:

• The new conversion specifiers A and a can be used to
print a number of type double in hexadecimal exponen-
tial notation (0Xh.hhhhP±d or 0xh.hhhhp±d). This conver-
sion uses FLOAT_RADIX, which is generally defined as 2, as
the base. If no precision is specified, the number is
printed with as many hexadecimal numerals as neces-
sary for exact representation.

• Arguments of type intmax_t(*) or uintmax_t(*) can be
converted by prefixing the letter j to the conversion spec-
ifiers d, i, o, u, x, or X. Similarly, the argument type size_
t is indicated by the prefix z, and the type ptrdiff_t by
the prefix t.

s string The string terminated by '\0' or truncated to the
number of characters specified by .precision.

N int * The number of characters printed up to this point is
stored in the given location

p pointer The corresponding address, hexadecimal

% none The character %

Table 24. Conversion specifiers for formatted output (continued)

Specifier Argument types Output format

84 | C Pocket Reference

• For the integer types defined in the header file stdint.h(*)
(such as int16_t and int_least32_t), there are separate
conversion specifiers for use in printf() format strings.
These conversion specifiers are defined as macros in the
header file inttypes.h(*). The macro names for the con-
version specifiers corresponding to d, i, o, x, and X begin
with the prefixes PRId, PRIi, PRIo, PRIu, PRIx, and PRIX.
For example, the macro names beginning with PRId are:

PRIdN PRIdLEASTN PRIdFASTN PRIdMAX PRIdPTR

where N is the width in bits (usually 8, 16, 32, or 64).
For example:

intmax_t i = INTMAX_MAX;
printf("Largest integer value: %20" PRIdMAX "\n",i);

Formatted input

The scanf() input functions are the counterparts to the
printf() formatted output functions. They are used to read
file input under control of a format string and convert the
information for assignment to variables.

int scanf(const char *format, ... /*arg1, ... , argn*/);
Reads characters from standard input and saves the con-
verted values in the variables addressed by the pointer
arguments arg1, ... , argn. The characters read are con-
verted according to the conversion specifications in the
format string format.

int fscanf(FILE *fp, const char *format, ...);
Like scanf(), but reads from the file specified by fp
rather than standard input.

int vfscanf(FILE *fp, const char *format, va_list arg);
Like fscanf(), but with the variable argument list
replaced by an object (arg) of type va_list that has been
initialized using the va_start macro. See “Functions with
Variable Numbers of Arguments” earlier in this book for
information on va_list and va_start.

Input and Output | 85

int vscanf(const char *format, va_list arg);
Like scanf(), but with the variable argument list replaced
by an object (arg) of type va_list that has been initial-
ized using the va_start macro. See “Functions with Vari-
able Numbers of Arguments” earlier in this book for
information on va_list and va_start.

All of the scanf functions return the number of successfully
converted input fields. The return value is EOF if the first
input field could not be read or converted, or if the end of
the input file was reached.

The general format of the conversion specifications used in
the scanf functions is as follows:

%[field width]specifier

For example:

scanf("%5d", &var); // var has type int

For each conversion specification in the format string, the
next input item is read, converted, and assigned to the vari-
able pointed to by the corresponding argument. Input fields
are separated by whitespace characters (space, tab, and new-
line characters).

field width indicates the maximum number of characters to
be read and converted. The next input field begins with the
first character not yet processed.

specifier corresponds to the conversion specifiers in output
format strings, except for the following differences:

• %i is used to read decimal, octal, and hexadecimal inte-
gers. The base is determined by the number’s prefix, as
for constants in source code.

• %f converts input for assignment to a variable of type
float, and %lf to a variable of type double.

• %c reads the next character, which may also be a space.
All other conversion specifiers read the next input item,
skipping over any spaces that precede it.

86 | C Pocket Reference

• %s reads a string and appends the string terminator char-
acter '\0'. The conversion specifier for a string, s, may
be replaced by a sequence of characters in square brack-
ets, called the scanlist. In this case, each character read
must match one of these characters. For example, use
%[1234567890] to read only digits. The first character that
does not match any of the characters in the scanlist ter-
minates the input item. If the scanlist begins with a caret
(^), then the input item is terminated by the first charac-
ter in the input stream that does match one of the other
characters in the scanlist. A hyphen can be used to indi-
cate a sequence of consecutive search characters. For
example, the scanlist [a-f] is equivalent to [abcdef].

If a conversion specification contains an asterisk (*) after the
percent sign (%), then the input item is read as specified, but
not assigned to a variable. In effect, that input field is
skipped. Such a conversion specification corresponds to no
variable argument.

Any character that cannot be interpreted according to the
conversion specification terminates the current input field,
and is put back into the input buffer. This character is then
the first one read for the next input item.

The format string can also contain other characters that do
not form part of a conversion specification and are not
whitespace. The scanf functions expect such characters to be
matched in the input stream, but do not convert or save
them. If non-matching characters occur in the input, the
function stops reading from the file. However, a whitespace
character in the format string matches any sequence of
whitespace characters in the input. For example, if the for-
mat string “ %c” is used to read an individual character, any
leading whitespace is skipped.

As for printf(), ANSI C99 defines separate conversion
specifiers for reading fixed-width integer variables, such as
int_least32_t. The corresponding macro names, defined in

Numerical Limits and Number Classification | 87

the header file inttypes.h(*), have the prefix SCN (for “scan”)
rather than PRI (for “print”).

The header file wchar.h(*) contains the declarations of
wprintf(), wscanf(), and related functions. These functions
provide input and output controlled by a wide format string.
The conversion specifications and their interpretation are
identical to those of the printf() and scanf() functions.

Numerical Limits and Number
Classification
When working with C’s various numeric types, it’s impor-
tant to understand the range of values that each type can
hold.

Value Ranges of Integer Types
The value ranges of the integer types are documented in the
header file limits.h. The constants, listed in Table 25, indi-
cate the largest and smallest values that can be represented
by the given type.

If char is interpreted as signed, then CHAR_MIN is equal to
SCHAR_MIN and CHAR_MAX is equal to SCHAR_MAX. If not, then
CHAR_MIN is equal to 0 and CHAR_MAX is equal to UCHAR_MAX.

Table 25. Limits of the integer types

Type Minimum Maximum
Maximum of the
unsigned type

char CHAR_MIN CHAR_MAX UCHAR_MAX

signed char SCHAR_MIN SCHAR_MAX

short SHRT_MIN SHRT_MAX USHRT_MAX

int INT_MIN INT_MAX UINT_MAX

long LONG_MIN LONG_MAX ULONG_MAX

long long(*) LLONG_MIN(*) LLONG_MAX(*) ULLONG_MAX(*)

88 | C Pocket Reference

In addition to the constants listed in Table 25, limits.h also
contains the following:

CHAR_BIT
The number of bits in a byte (usually 8)

MB_LEN_MAX
The maximum number of bytes in a multibyte character

In the header file stdint.h(*), constants are also defined to
document the minimum and maximum values of the types
wchar_t, wint_t, size_t, ptrdiff_t, and sig_atomic_t, and of
the fixed-width integer types, such as int_least32_t. The
names of these constants are formed from the type names as
follows: the type name is written all in capital letters, and the
suffix _t is replaced by _MIN or _MAX. For example:

WCHAR_MIN // Minimum value of wchar_t
INT_LEAST32_MAX // Maximum value of int_least32_t

For the unsigned types only the ..._MAX constants are
defined.

Range and Precision of Real Floating Types
The macros listed in Table 26 are defined in the header file
float.h to represent the range and the precision of the types
float, double, and long double. The macro names are formed
using the prefixes FLT for float, DBL for double, and LDBL for
long double. The macros FLT_RADIX and FLT_ROUNDS apply to
all three floating types.

Table 26. Macros for floating types in float.h

Macro name Purpose

FLT_RADIX Base (or radix) of the exponential notation

FLT_ROUNDS Indicates how rounding is performed on values that
cannot be represented exactly:

-1 = undetermined
 0 = towards zero,
1 = towards the nearest representable value
 2 = upwards
 3 = downwards

Numerical Limits and Number Classification | 89

The macros listed in Table 26 document the range and preci-
sion of all real floating types. In actual programs, such infor-
mation is most often needed for decimal (base 10) notation.
Accordingly, you can use the macros for type float listed
Table 27, and which are defined in float.h.

Similar constants are also defined for the types double and
long double. These have names beginning with DBL or LDBL in
place of FLT.

ANSI C99 also introduces the macro DECIMAL_DIG, which
indicates the precision of the largest floating type as a num-
ber of decimal digits.

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

The number of digits in the mantissa to base FLT_RADIX

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

Minimum value of the exponent to base FLT_RADIX

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

Maximum value of the exponent to base FLT_RADIX

Table 27. Limits for the type float

Macro name Purpose

FLT_DIG Precision as a number of decimal digits

FLT_MIN_10_EXP Minimum negative exponent to base 10

FLT_MAX_10_EXP Maximum positive exponent to base 10

FLT_MIN Minimum representable positive floating-point number

FLT_MAX Maximum representable floating-point number

FLT_EPSILON Minimum positive representable floating-point number x such
that 1.0 + x != 1.0

Table 26. Macros for floating types in float.h (continued)

Macro name Purpose

90 | C Pocket Reference

Classification of Floating-Point Numbers
ANSI C99 defines five categories of floating-point numbers,
listed in Table 28. A symbolic constant for each category is
defined in the header file math.h.

The macros in Table 29 can be used to classify a real floating-
point number x with respect to the categories in Table 28
without causing an error condition.

The following constants are also defined in math.h:

INFINITY
The maximum positive value of type float, used to rep-
resent infinity.

Table 28. Floating-point categories

Macro name Category

FP_ZERO Floating-point numbers with the value 0

FP_NORMAL Floating-point numbers in normalized representation

FP_SUBNORMALa

a Tiny numbers may be represented in subnormal notation.

Floating-point numbers in subnormal representation

FP_INFINITE Floating-point numbers that represent an infinite value

FP_NAN Not a Number (NAN): bit patterns that do not represent a valid
floating-point number

Table 29. Macros for floating-point number classification

Macro Result

fpclassify(x) Returns one of the constants described in Table 28 to indicate the
category to which x belongs.

isfinite(x) Returns “true” (i. e., a value other than 0) if the value of x is finite
(0, normal, subnormal, not infinite, or NAN), otherwise 0.

isinf(x) Returns “true” if x is an infinity, otherwise 0.

isnormal(x) Returns “true” if the value of x is a normalized floating-point
number not equal to 0. Returns 0 in all other cases.

isnan(x) Returns “true” if x is “not a number” (NaN), otherwise 0.

signbit(x) Returns “true” if x is negative (i.e., if the sign bit is set), otherwise 0

Mathematical Functions | 91

NAN (Not a Number)
A value of type float which is not a valid floating-point
number.

NANs can be either quiet or signaling. If a signaling NAN occurs
in the evaluation of an arithmetic expression, the exception
status flag FE_INVALID in the floating point environment is
set. This flag is not set when a quiet NAN occurs.

C implementations are not required to support the concept
of NANs. If NANs are not supported, the constant NAN is not
defined.

Mathematical Functions
C supports a variety of useful mathematical functions. Differ-
ent functions apply to different datatypes. For example, ran-
domization functions apply to integers, whereas trigonometric
functions apply to floating-point values.

Mathematical Functions for Integer Types
The mathematical functions for the types int and long are
declared in stdlib.h.

int rand(void);
Generates a random number between 0 and RAND_MAX.
The constant RAND_MAX has a value of at least 32767, or
215 – 1.

void srand(unsigned n);
Initializes the random number generator with the seed n.
After this function has been called, calls to rand() gener-
ate a new sequence of random numbers.

int abs(int x);
Returns the absolute value of x.

div_t div(int x, int y);
Divides x by y and stores the integer part of the quotient
and the remainder in a structure of type div_t, whose

92 | C Pocket Reference

members quot (the quotient) and rem (the remainder)
have type int. The type div_t is defined in stdlib.h.

The corresponding (to abs() and div()) functions labs(),
llabs()(*), lldiv()(*), and ldiv() are also provided for inte-
gers of type long or long long(*). Furthermore, the functions
imaxabs()(*) and imaxdiv()(*) are defined for the type
intmax_t(*). These functions are declared in inttypes.h(*).

Mathematical Functions for Real Floating
Types
The mathematical functions declared in math.h were origi-
nally defined only for double values, with return values and
parameters of type double. These functions are shown in
Table 30.

Table 30. The traditional mathematical functions for double values

Mathematical function C function

Trigonometric functions:

Sine, cosine, tangent sin(), cos(), tan()

Arcsine, arccosine asin(), acos()

Arctangent atan(), atan2()

Hyperbolic functions sinh(), cosh(), tanh()

Powers, square root pow(), sqrt(),

Exponential functions exp(), frexp(), ldexp()

Logarithms log(), log10()

Next integer ceil(), floor()

Absolute value fabs()

Remainder (modular division) fmod()

Separation of integer and fractional parts modf()

Mathematical Functions | 93

ANSI C99 introduces new versions of the functions listed in
Table 30 for the types float and long double. The names of
these functions end with f or l; for example:

double cos(double x);
float cosf(float x);
long double cosl(long double x);

New standard mathematical functions for real numbers have
also been added in math.h, as listed in Table 31. These func-
tions also have versions for float and long double, with
names ending in f and l.

Macros for comparing floating-point numbers are also
defined in math.h and are listed in Table 32. Unlike the com-
parative operators, these macros do not raise the FE_INVALID
exception when the arguments cannot be compared, as when
one of them is a NAN, for example.

Table 31. New mathematical functions for double values in ANSI
C99

Mathematical function C function

Trigonometric functions asinh(), acosh(), atanh()

Exponential functions exp2(), expm1()

Logarithms ilogb(), logb(), log1p(), log2()

Roots cbrt(), hypot()

Remainder remainder(), remquo()

Positive difference fdim()

Minimum and maximum fmin(), fmax()

Rounding trunc(), rint(), lrint(), llrint(),
round(), lround(), llround()

Next number nearbyint(), nextafter(), nexttoward()

Copy sign copysign()

Optimized operations scalbn(), scalbln(), fma()

Gamma function tgamma(), lgamma()

Error functions erf(), erfc()

94 | C Pocket Reference

Optimizing Runtime Efficiency
ANSI C99 has introduced features to optimize the efficiency
of floating-point operations.

The types float_t and double_t, defined in math.h, repre-
sent the types used internally in floating-point arithmetic.
When these types are used in a program, no conversions are
necessary before arithmetic operations are performed. The
macro FLT_EVAL_METHOD indicates what the equivalent basic
types are, and returns one of the values described in
Table 33.

CPUs may have special machine instructions to perform
standard arithmetic operations quickly. Rounding and error
conditions may also be ignored. Optimizations of these kinds
can be enabled by the pragma FP_CONTRACT. For example:

#pragma STDC FP_CONTRACT ON

The same pragma with the switch OFF rather than ON disables
such optimizations.

Table 32. Macros for comparing floating-point numbers

Macro Comparative expression

isgreater(x, y) (x) > (y)

isgreaterequal(x, y) (x) >= (y)

isless(x, y) (x) < (y)

islessequal(x, y) (x) <= (y)

islessgreater(x, y) (x) < (y) || (x) > (y)

isunordered(x, y) 1 if x and y cannot be compared, otherwise 0

Table 33. Interpretation of float_t and double_t

FLT_EVAL_METHOD
Type represented by
float_t

Type represented by
double_t

0 float double

1 double double

2 long double long double

Mathematical Functions | 95

Furthermore, the macro FP_FAST_FMA is defined if the “float-
ing-point multiply-add” function fma(x, y, z), which
returns x*y+z, is implemented as a special instruction, and is
thus faster than separate multiplication and addition opera-
tions. The macros FP_FAST_FMAF and FP_FAST_FMAL are analo-
gous indicators for the functions fmaf() and fmal().

Mathematical Functions for Complex
Floating Types
Functions and macros for complex numbers are declared in
the header file complex.h(*). The functions shown in
Table 34 have one parameter and return a value of type
double complex.

The functions shown in Table 35 have one parameter of type
double complex and return a value of type double.

Table 34. Mathematical functions for the type double complex

Mathematical function C function

Trigonometric functions:

Sine, cosine, tangent csin(), ccos(), ctan()

Arcsine, arccosine casin(), cacos()

Arctangent catan()

Hyperbolic functions csinh(), ccosh(), ctanh(),
casinh(), cacosh(), catanh()

Powers, square root cpow(), csqrt()

Exponential function cexp()

Logarithm clog()

Complex conjugate conj()

Table 35. Complex functions with type double

Mathematical function C function

Absolute value cabs()

Argument (phase angle) carg()

96 | C Pocket Reference

These functions also have versions for float complex and
long double complex, with names ending in f and l.

Table 36 shows macros that are defined for complex types.

Arithmetic operations with complex numbers can be acceler-
ated in cases when no overflow or underflow can occur. The
programmer can signal such “safe” operations using the
pragma:

#pragma STDC CX_LIMITED_RANGE ON

The default setting is OFF.

Type-Generic Macros
The type-generic macros defined in header file tgmath.h are
unified names that can be used to call the different mathe-
matical functions for specific real and complex floating types.

If a given function is defined for real or for both real and
complex floating types, then the type-generic macro name is
the same as the name of the function version with type

Real and imaginary parts creal(), cimag()

Projection onto the Riemann sphere cproj()

Table 36. Macros for complex types

Macro Replacement value

complex _Complex

_Complex_I The imaginary unit, i. e., the number i such that i2 = -1, with
type const float _Complex

imaginary _Imaginary

_Imaginary_I The imaginary unit, with type const float _Imaginary

I _Imaginary_I if the compiler supports the type _Imaginary,
otherwise _Complex_I

Table 35. Complex functions with type double (continued)

Mathematical function C function

Mathematical Functions | 97

double. (The real function modf() is an exception, however,
for which there is no type-generic macro.)

The type-generic macros always call the function that
matches the type of the arguments. For example:

complex z = 1.0 + 2.1*I;
cos(z); // Calls ccos()
ceil(7.1L); // Calls ceill()

Type-generic macros are also defined for the complex func-
tions for which there are no corresponding real functions:
carg(), conj(), creal(), cimag(), and cproj(). These macros
always call the corresponding complex function, if the argu-
ment is a real floating-point number or a complex number.

Error Handling for Mathematical Functions
Error conditions are customarily detected by examining the
return value of a function and/or the global error variable
errno. The variable errno is declared with type int in the
header file errno.h.

If a function is passed an argument that is outside the
domain for which the function is defined, a “domain error”
occurs, and errno is assigned the value of the macro EDOM.
Similarly, if the result of a function cannot be represented by
the type of the function’s return value, then a “range error”
occurs, and errno is assigned the value ERANGE. In the case of
an overflow—that is, if the magnitude of the result is too
great for the specified type—the function returns the value of
the macro HUGE_VAL, with the appropriate sign. In case of an
underflow—i.e., the magnitude of the result is too small—
the function returns 0.

In addition to HUGE_VAL (with type double), ANSI C99 also
provides the macros HUGE_VALF (type float) and HUGE_VALL
(type long double), which are returned by functions of the
corresponding types.

98 | C Pocket Reference

Furthermore, ANSI C99 introduces the macros FP_ILOGB0
and FP_ILOGBNAN. The function ilogb(x) returns FP_ILOGB0
if x is equal to 0. If x is “not a number” (NaN), ilogb(x)
returns the value of FP_ILOGBNAN.

The Floating-Point Environment
ANSI C99 has introduced the floating-point environment to
permit more detailed representation of error conditions in
floating-point arithmetic. All of the declarations for the
floating-point environment are contained in the header file
fenv.h(*). The floating-point environment contains two sys-
tem variables: one for the status flags, which are used in han-
dling floating-point exceptions, and one for the control
modes, which determine certain behaviors of floating-point
arithmetic, such as the rounding method used.

For every exception possible in an implementation that sup-
ports floating-point exceptions, an appropriate status flag is
defined, as described in Table 37.

Several of these constants can be combined by a bitwise OR
(|). The macro FE_ALL_EXCEPT is equal to the bitwise OR of all
of the floating-point exception constants implemented. The
system variable for the floating-point exception status has the
type fexcept_t.

Table 37. Macros for floating-point exceptions in fenv.h(*)

Macro Error condition

FE_DIVBYZERO Division by 0

FE_INEXACT The result of the operation is not exact

FE_INVALID The result is undefined, e.g., a value was outside the domain for
which the function is defined

FE_OVERFLOW A floating-point overflow occurred

FE_UNDERFLOW An underflow occurred

Mathematical Functions | 99

The following functions are used to handle floating-point
exceptions. With the exception of fetestexcept(), each func-
tion returns 0 to indicate success, or a value other than 0 in
case of errors. The excepts argument indicates which of the
exceptions listed in Table 37 are affected.

int fetestexcept(int excepts);
Tests which of the specified floating-point exceptions are
set. Bits are set in the return value to correspond to the
exceptions that are currently set.

int feclearexcept(int excepts);
Clears the specified floating-point exceptions.

int feraiseexcept(int excepts);
Raises the specified floating-point exceptions.

int fegetexceptflag(fexcept_t *flagp, int excepts);
Saves the status of the specified exceptions in the object
referenced by flagp.

int fesetexceptflag(const fexcept_t *flagp,
 int excepts);

Sets the exception status according to the flags previ-
ously saved (by fegetexceptflag()) in the object refer-
enced by flagp.

The control mode determines certain properties of floating-
point arithmetic, including the rounding method used. The
symbolic constants described in Table 38 are defined for this
purpose.

Table 38. Controlling rounding behavior

Macro Rounding direction

FE_DOWNWARD Round down to the next lower value.

FE_TONEAREST Round to the nearest value.

FE_TOWARDZERO Truncate.

FE_UPWARD Round up to the next higher value.

100 | C Pocket Reference

The current rounding direction can be read and changed using
the functions int fegetround() and int fesetround(int
round).

The following functions manipulate the floating-point envi-
ronment as a single entity. The type fenv_t represents the
entire floating-point environment.

int fegetenv(fenv_t *envp);
Saves the current floating-point environment in the
object referenced by envp.

int fesetenv(const fenv_t *envp);
Establishes the floating-point environment referenced by
envp.

int feholdexcept(fenv_t *envp);
Saves the current floating-point environment in the
object referenced by envp, then clears the status flags and
installs a non-stop mode, so that processing continues in
case of further floating-point exceptions.

int feupdateenv(const fenv_t *envp);
Establishes the floating-point environment referenced by
envp, and then raises the exceptions that were set in the
saved environment.

The macro FE_DFL_ENV is a pointer to the floating-point envi-
ronment that is installed at program start-up, and can be
used as an argument in the functions fesetenv() and
feupdateenv().

The floating-point environment need not be active in an
implementation that supports it. It can be activated by the
pragma:

#pragma STDC FENV_ACCESS ON

and deactivated by the same pragma with the switch OFF.

Character Classification and Case Mapping | 101

The macro math_errhandling, defined in math.h, can be used
to determine whether the program uses errno and/or the
floating-point environment:

• If the expression math_errhandling & MATH_ERRNO is not 0,
then the error variable errno is used.

• If the expression math_errhandling & MATH_ERREXCEPT is
not 0, then floating-point errors raise the exceptions
defined in fenv.h.

Character Classification and Case
Mapping
A number of functions for classifying and changing the case
of characters with type char are defined in the header file
ctype.h. These functions, whose names begin with is... or
to..., accept a one-character argument whose value is
between 0 and 255, or EOF.

The is... functions, listed in Table 39, test whether the
character is a member of a specific category of characters.
They return “true,” i.e., a non-zero value, if the character is
in the given category. If not, the return value is 0, or “false.”

Table 39. Functions for character classification

Category Function

Letter int isalpha(int c);

Lower-case letter int islower(int c);

Upper-case letter int isupper(int c);

Decimal digit int isdigit(int c);

Hexadecimal digit int isxdigit(int c);

Letter or decimal digit int isalnum(int c);

Printable character int isprint(int c);

Printable character other than space ' ' int isgraph(int c);

Whitespace character int isspace(int c);

102 | C Pocket Reference

The following example reads a character and then tests to see
whether it is a digit:

int c = getchar(); // Read a character
if (isdigit(c)) ...// Is it a decimal digit?

The to... functions are used to convert characters from
upper- to lower-case and vice versa, as shown in Table 40.

The corresponding functions for wide characters, with type
wchar_t, are declared in the header file wctype.h(*). Their
names are similar to those in Tables 39 and 40, but start with
isw... and tow.... These functions expect one character argu-
ment of type wint_t whose value is between 0 and 32767, or
WEOF.

For wide characters there are also the extensible classifica-
tion and mapping functions, iswctype() and towctrans().
These functions provide flexible, locale-specific testing and
mapping of wide characters. Before one of these functions is
used, the desired test criterion or mapping information must
be registered by a call to wctype() or wctrans():

iswctype(wc, wctype("lower"));
towctrans(wc, wctrans("upper"));

Punctuation mark int ispunct(int c);

Control character int iscntrl(int c);

Space or horizontal tabulator int isblank(int c);(*)

Table 40. Case mapping functions

Conversion Function

Upper- to lower-case int tolower(int c);

Lower- to upper-case int toupper(int c);

Table 39. Functions for character classification (continued)

Category Function

String Handling | 103

These calls are equivalent to iswlower(wc); and
towupper(wc);. The function wctype() returns a value of type
wctype_t, and wctrans() has a return value of type wctrans_t.

Single-byte characters of type unsigned char can be con-
verted to the type wchar_t using the function btowc(), which
is declared in wchar.h(*). The opposite conversion is per-
formed by the function wctob(). If the character cannot be
converted, these functions return EOF or WEOF.

All of these functions take language-specific particularities of
the current locale into account (see the later section “Interna-
tionalization”).

String Handling
There is no basic type for strings in C. A string is simply a
sequence of characters ending with the string terminator,
stored in a char array. A string is represented by a char
pointer that points to the first character in the string.

The customary functions for manipulating strings are
declared in string.h. Those functions that modify a string
return a pointer to the modified string. The functions used to
search for a character or a substring return a pointer to the
occurrence found, or a null pointer if the search was unsuc-
cessful.

char *strcat(char *s1, const char *s2);
Appends the string s2 to the end of s1. The first charac-
ter copied from s2 replaces the string terminator charac-
ter of s1.

char *strchr(const char *s, int c);
Locates the first occurrence of the character c in the
string s.

int strcmp(const char *s1, const char *s2);
Compares the strings s1 and s2, and returns a value that
is greater than, equal to, or less than 0 to indicate

104 | C Pocket Reference

whether s1 is greater than, equal to, or less than s2. A
string is greater than another if the first character code in
it which differs from the corresponding character code in
the other string is greater than that character code.

int strcoll(const char *s1, const char *s2);
Transforms an internal copy of the strings s1 and s2
using the function strxfrm(), then compares them using
strcmp() and returns the result.

char *strcpy(char *s1, const char *s2);
Copies s2 to the char array referenced by s1. This array
must be large enough to contain s2 including its string
terminator character '\0'.

int strcspn(const char *s1, const char *s2);
Determines the length of the maximum initial substring
of s1 that contains none of the characters found in s2.

size_t strlen(const char *s);
Returns the length of the string addressed by s. The
length of the string is the number of characters it con-
tains, excluding the string terminator character '\0'.

char *strncat(char *s1, const char *s2, size_t n);
Appends the first n characters of s2 (and the string termi-
nator character) to s1.

int strncmp(const char *s1, const char *s2, size_t n);
Compares the first n characters of the strings s1 and s2.
The return value is the same as for strcmp().

char *strncpy(char *s1, const char *s2, size_t n);
Copies the first n characters of s2 to the char array s1.
The string terminator character '\0' is not appended. If
s2 is a string that is shorter than n characters, the remain-
ing characters written are '\0'.

char *strpbrk(const char *s1, const char *s2);
Locates the first occurrence in s1 of any of the characters
contained in s2.

String Handling | 105

char *strrchr(const char *s, int c);
Locates the last occurrence of the character c in the string
s. The string terminator character '\0' is included in the
search.

int strspn(const char *s1, const char *s2);
Determines the length of the maximum initial substring
of s1 that consists only of characters contained in s2.

char *strstr(const char *s1, const char *s2);
Locates the first occurrence of s2 (without the terminat-
ing '\0') in s1.

char *strtok(char *s1, const char *s2);
Breaks the string in s1 into the substrings (“tokens”)
delimited by any of the characters contained in s2.

size_t strxfrm(char *s1, const char *s2, size_t n);
Performs a locale-specific transformation (such as a case
conversion) of s2 and copies the result to the char array
with length n that is referenced by s1.

Similar functions for wide-character strings, declared in the
header file wchar.h(*), have names beginning with wcs in
place of str.

Conversion Between Strings and Numbers
A variety of functions are declared in the header file stdlib.h
to obtain numerical interpretations of the initial digit charac-
ters in a string. The resulting number is the return value of
the function.

int atoi(const char *s);
Interprets the contents of the string s as a number with
type int. The analogous functions atol(), atoll()(*),
and atof() are used to convert a string into a number
with type long, long long(*), or double.

106 | C Pocket Reference

double strtod(const char *s, char **pptr);
Serves a similar purpose to that of atof(), but takes the
address of a char pointer as a second argument. If the
char pointer referenced by pptr is not NULL, it is set to
the first character in the string s (excluding any leading
whitespace) that is not part of the substring representing
a floating-point number.

The corresponding functions for conversion to the types
float and long double are strtof()(*) and strtold()(*).

long strtol(const char *s, char **pptr, int base);
Converts a string to a number with type long. The third
parameter is the base of the numeral string, and may be
an integer between 2 and 36, or 0. If base is 0, the string s
is interpreted as a numeral in base 8, 16, or 10, depend-
ing on whether it begins with 0, 0x, or one of the digits 1
to 9.

The analogous functions for converting a string to
unsigned long, long long(*) or unsigned long long(*) are
strtoul()(*), strtoll()(*), and strtoull()(*).

The header file inttypes.h(*) also declares the functions
strtoimax() and strtoumax(), which convert the initial digits
in a string to an integer of type intmax_t or uintmax_t.

Similar functions for wide-character strings are declared in
the header file wchar.h(*). Their names begin with wcs in
place of str.

The following function from the printf family is used to con-
vert numeric values into a formatted numeral string:

int sprintf(char *s,const char *format,.../*a1,...,an*/);
Copies the format string format to the char array refer-
enced by s, with the conversion specifications replaced
using the values in the argument list a1,...,an.

Numerical values can also be read from a string based on a
format string:

String Handling | 107

int sscanf(char *s,const char *format,.../*a1,...,an*/);
Reads and converts data from s, and copies the resulting
values to the locations addressed by the argument list
a1,...,an.

The functions vsprintf() and vsscanf() are similar to
sprintf() and sscanf(), but with the variable argument list
replaced by an object of type va_list that has been initial-
ized using the va_start macro (see “Functions with Variable
Numbers of Arguments” earlier in this book). The functions
snprintf() and vsnprintf() write a maximum of n charac-
ters, including the string terminator character, to the array
referenced by s. These functions return the number of char-
acters actually written to the array, not counting the string
terminator character.

The corresponding formatted string input/output functions
for wide-character strings are declared in wchar.h(*). Their
names begin with sw (for “string, wide”) in place of the ini-
tial s (for “string”) in the names of the functions described
above for char strings. For example, swprintf().

Multibyte Character Conversion
A multibyte character may occupy more than one byte in
memory. The maximum number of bytes that can be used to
represent a multibyte character is the value of the macro MB_
CUR_MAX, which is defined in stdlib.h. Its value is dependent
on the current locale. In the default locale “C”, MB_CUR_MAX
has the value 1.

Every multibyte character corresponds to exactly one charac-
ter of type wchar_t. The functions for multibyte character
conversion are declared in the header file stdlib.h.

int mblen(const char *s, size_t max);
Determines the length of the multibyte character pointed
to by s. The maximum length of the character is specified
by max. Accordingly, max must not exceed MB_CUR_MAX.

108 | C Pocket Reference

size_t wctomb(char *s, wchar_t wc);
Converts the wide character wc into the multibyte repre-
sentation, and writes the corresponding multibyte char-
acter in the array addressed by s.

size_t wcstombs(char *s, const wchar_t *p, size_t n);
Converts the first n wide characters referenced by p into
multibyte characters, and copies the results to the char
array addressed by s.

size_t mbtowc(wchar_t *p, const char *s, size_t max);
Determines the wide character code corresponding to the
multibyte character in s, whose maximum length is spec-
ified by max, and copies the result to the wchar_t variable
referenced by p.

size_t mbstowcs(wchar_t *p, const char *s, size_t n);
Converts the first n multibyte characters of s into the
wide characters and copies the result to the array
addressed by p.

Similar functions with an additional r in their names (for
restartable) are also declared in wchar.h(*). The restartable
functions have an additional parameter, a pointer to the type
mbstate_t, that must point to an object describing the cur-
rent wide/multibyte character conversion state. Further-
more, the function mbsinit()(*) can be used to test whether
the current conversion state is an initial conversion state.

Searching and Sorting
The following two functions are declared in the header file
stdlib.h as general utilities for searching and sorting:

void qsort(void *a, size_t n, size_t size,
 int (*compare)(const void *,const void *));

Sorts the array a using the quick-sort algorithm. The
array is assumed to have n elements whose size is size.

Memory Block Management | 109

void *bsearch(const void *key, const void *a,
 size_t n, size_t size, int
 (*compare)(const void*, const void*));

Searches in a sorted array a for the key addressed by key,
using the binary search algorithm. The array a is assumed
to have n array elements whose size is size.

The last parameter to these functions, compare, is a pointer to
a function that compares two elements of the array a. Usu-
ally this function must be defined by you, the programmer.
Its parameters are two pointers to the array elements to be
compared. The function must return a value that is less than,
equal to, or greater than 0 to indicate whether the first ele-
ment is less than, equal to, or greater than the second. To
search or sort an array of float values, for example, the fol-
lowing comparison function could be specified:

int floatcmp(const void* p1, const void* p2)
{ float x = *(float *)p1,
 y = *(float *)p2;
 return x <= y ? (x < y ? -1 : 0) : 1;
}

Memory Block Management
The following functions declared in string.h are used to com-
pare, search, or initialize memory buffers:

void *memchr(const void *buf, int c, size_t n);
Searches the first n bytes of the buffer buf for the first
occurrence of the character c.

void *memcmp(const void *s1, const void *s2, size_t n);
Compares the first n bytes in the buffer s1 with the corre-
sponding bytes in the buffer s2. The return value is less
than, equal to, or greater than 0 to indicate whether s1 is
less than, equal to, or greater than s2.

void *memcpy(void *dest, const void *src, size_t n);
Copies n bytes from the buffer src to the buffer dest.

110 | C Pocket Reference

void *memmove(void *dest, const void *src, size_t n);
Copies n bytes from the buffer src to the buffer dest. In
case the buffers overlap, every byte is read before another
character is written to the same location.

void *memset(void *dest, int c, size_t n);
Fills the first n bytes of the buffer dest with the character c.

The corresponding wmem... functions, for handling buffers of
wide characters with type wchar_t, are declared in the header
file wchar.h(*).

Dynamic Memory Management
In order to make efficient use of memory, it is important for
a program to be able to allocate and release blocks of mem-
ory dynamically during execution. The functions for
dynamic memory management are declared in the header file
stdlib.h.

A successful call to one of the memory allocation functions
returns the beginning address of a memory block of the
requested size. The return value has the type “pointer to
void”. The program can then use the allocated block in any
way desired. When a block of memory is no longer needed, it
should be released. All dynamically allocated memory blocks
are automatically released when the program exits.

void *malloc(size_t size);
Allocates a memory block of size bytes.

void *calloc(size_t n, size_t size);
Allocates enough memory to hold an array of n ele-
ments, each of which has the size size, and initializes
every byte with the value 0.

void *realloc(void *ptr, size_t n);
Changes the length of the memory block referenced by
ptr to the new length n. If the memory block has to be
moved in order to provide the new size, then its current
contents are automatically copied to the new location.

Time and Date | 111

void free(void *ptr);
Releases the memory block referenced by ptr.

The following example uses malloc to allocate space for an
array of 1000 integers:

// Get space for 1000 int values:
int *iArr = (int*)malloc(1000 * sizeof(int));

These functions can be called as often as necessary, and in
any order. The pointer argument passed to realloc() and
free() must refer to a memory block that has been dynami-
cally allocated, of course.

Time and Date
The ANSI C library includes a set of functions to determine
the current time and date, to convert time and date informa-
tion, and to generate formatted time and date strings for out-
put. These functions are declared in the header file time.h.

The principal functions for determining the current time are:

clock_t clock(void);
Returns the CPU time used by the program so far, with
type clock_t (usually equivalent to long). The result can
be converted to seconds by dividing it by the constant
CLOCKS_PER_SEC.

time_t time(time_t *pSec);
Returns the number of seconds that have elapsed since a
certain time (usually January 1, 1970, 00:00:00 o’clock).
If the pointer pSec is not NULL, the result is also copied
to the location it addresses. The type time_t is generally
defined as long.

The functions for converting and formatting date and time
information are:

double difftime(time_t t1, time_t t0);
Returns the number of seconds between t0 and t1.

112 | C Pocket Reference

struct tm *gmtime(const time_t *pSec);
Returns a pointer to the current Greenwich Mean Time
as a structure of type struct tm, with members of type
int for the second, minute, hour, day, etc.

struct tm *localtime(const time_t *pSec);
Like gmtime(), but returns the local time rather than
Greenwich Mean Time.

char *ctime(const time_t *pSec);
char *asctime(const struct tm *ptm);
size_t strftime(char *dest, size_t maxsize,
 const char *format, const struct tm *ptm);

These functions generate a string representing the local
date and time. strftime() accepts a format string to con-
trol the output format.

The function wcsftime() is a version of strftime() for wide-
character strings, and is declared in the header file wchar.h(*).

Figure 6 illustrates the uses of the time and date functions.

Figure 6. Usage of time and date functions

System CPU time used
clock()

time()

Arithmetic type

(seconds)

time_t

ctime()

Date and time†

String

† For example: Sun Jul 18 16:12:30 2003

Second
Minute
Hour
Day of month

Month
Year since 1900

Day of week
Day of year
DST flag

localtime()
gmtime()

mktime()

strime()
asctime()

Process Control | 113

Process Control
A process is a program that is being executed. The attributes
that a process can have vary from one operating system to
another. For this reason, the process control functions work
in ways that are specific to certain systems.

Communication with the Operating
System
Environment

In operating systems such as Unix and Windows, each
process is started in an environment represented by a list
of strings with the form NAME=VALUE. These “environment
variables” can be read using the function getenv().

System calls
The function system() invokes the system’s command
interpreter and gives it a command to execute.

Program termination
A C program is normally terminated via a call to the
function exit(), or by a return statement in the function
main(). On normal termination, the following actions are
performed:

1. Any functions that have been installed by atexit()
are executed.

2. The I/O buffers are flushed and the files closed.

3. The files created by tmpfile() are deleted.

The function abort(), on the other hand, ends a C pro-
gram without performing the actions just listed. This
function does produce an error message announcing that
the program was aborted, however.

The function exit() can be called with one of the con-
stants EXIT_FAILURE and EXIT_SUCCESS, defined in stdlib.h,
as an argument. In this way the program can inform its
parent process whether it “failed” or “succeeded.”

114 | C Pocket Reference

All of the functions described in this section are declared in
the header file stdlib.h.

Signals
The operating system can send processes a signal when an
exceptional situation occurs. This may happen in the event
of a severe fault, such as a memory addressing error for
example, or when a hardware interrupt occurs. Signals can
also be triggered by the user at the console, however, or by
the program itself, using the function raise(). Functions and
macros for dealing with signals are declared in the header file
signal.h.

Each type of signal is assigned a constant signal number and
identified by a macro name. These include the signals listed
in Table 41.

Other signals may be defined depending on the operating
system.

int raise(int sig);
Sends the signal sig to the program which called the
function.

Table 41. Macros for signals in signal.h

Signal number Meaning

SIGABRT Abort: abnormal program termination, as caused by the abort()
function

SIGFPE Floating point exception: caused by an overflow, division by 0, or
other FPU or emulation errors

SIGILL Illegal instruction: an invalid instruction was encountered in the
machine code

SIGINT Interrupt: the break key (e. g., Ctrl-C) was pressed

SIGSEGV Segmentation violation: illegal memory access

SIGTERM Terminate: a request to terminate the program (in Unix, the
standard signal sent by the kill command)

Process Control | 115

void (*signal(int sig, void (*func)(int)))(int);
Specifies how the program responds to a signal with the
number sig. The second argument, func, identifies the
signal handler. This may be a pointer to a function, or
one of the following constants:

• SIG_DFL Execute the default signal handler.

• SIG_IGN Ignore the signal.

The default signal handler terminates the program. If
unsuccessful, signal() returns the value SIG_ERR.

The header file signal.h also defines the integer type sig_
atomic_t. This type is used for static objects which can be
accessed by a hardware interrupt signal handler.

Non-Local Jumps
Local jumps, or jumps within a function, are performed by
the goto statement. The macro setjmp(), on the other hand,
marks a location in the program (by storing the pertinent
process information) so that execution can be resumed at
that point at any time by a call to the function longjmp().
The longjmp() function and the setjmp() macro are declared
in the header file setjmp.h.

int setjmp(jmp_buf env);
Saves the current calling environment (CPU registers and
stack) in the buffer env, which has the type jmp_buf.

void longjmp(jmp_buf env, int retval);
Restores the saved environment, so that program execu-
tion continues at the point where setjmp() was called.

The program can use the return value of setjmp() to deter-
mine whether setjmp() itself was just called, or whether a
jump to this point by means of longjmp() has just occurred.
setjmp() itself returns the value 0, but after a call to
longjmp() the apparent return value of setjmp() is the value
of the argument retval. If retval is equal to 0, the apparent
return value is 1.

116 | C Pocket Reference

Error Handling for System Functions
If an error occurs during a call to a system function, the glo-
bal error variable errno is assigned an appropriate error code.
The following three functions are used to provide the corre-
sponding system error messages:

void perror(const char *string); Declared in stdio.h
Writes the text pointed to by string, followed by the sys-
tem error message corresponding to the current value of
errno, to the standard error stream.

char *strerror(int errnum); Declared in string.h
Returns a pointer to the system error message corre-
sponding to errnum. The value of errnum is usually
obtained from the error variable errno.

The following two statements result in the same output:
perror("OPEN");
fprintf(stderr, "OPEN: %s\n", strerror(errno));

void assert(int expression); Declared in assert.h
This macro tests the scalar expression expression. If the
result is 0, or “false”, then assert() writes the expres-
sion, function name, filename, and line number to the
standard error stream, and then aborts program. If the
expression is “true” (i.e., not equal to 0), no action is
taken and the program continues.

If the macro NDEBUG is defined, calls to assert() have no
effect.

Internationalization
The ANSI standard supports the development of C pro-
grams that are adaptable to language and country-specific
customs, such as the formatting of currency strings. The
ANSI library also provides two functions, the type lconv, and
macros for dealing with locales. These are declared in the
header file locale.h.

Internationalization | 117

All programs start with the default locale “C”, which con-
tains no country or language-specific information. During
execution, the program can change to another locale and
retrieve locale-specific information. Since most applications
do not require the full range of locale-specific information,
this information is classified into categories, as shown in
Table 42.

The following function is used to adapt a program to a spe-
cific locale:

char *setlocale(int category, const char *name);
The argument category is one of the symbolic constants
described in Table 42, and name points to a string which
identifies the desired locale for the specified category.

The name string may have at least the following values:

"C"
The default locale, with no country-specific informa-
tion.

""
The compiler’s native locale.

Table 42. Locale categories

Category Portions of the locale affected

LC_ALL The entire locale, including all of the categories below

LC_COLLATE Only the functions strcoll() and strxfrm()

LC_CTYPE Functions for character processing, such as isalpha() and the
multibyte functions

LC_MONETARY The currency formatting information returned by
localeconv()

LC_NUMERIC The decimal point character used by input/output and string
conversion functions, and the formatting of non-currency numeric
information, as returned by localeconv()

LC_TIME Formatting of date and time information by strftime()

118 | C Pocket Reference

NULL
setlocale() makes no changes, but returns the name
of the current locale. This name can later be passed
to setlocale() as an argument to restore the locale
after it has been changed.

The following standard function groups use locale informa-
tion: formatted input/output, character classification and case
mapping, multibyte character handling, multibyte string han-
dling, and conversion between strings and numeric values.

The following function can be used to obtain information for
formatting numeric strings, such as the decimal point and
currency symbol characters:

struct lconv* localeconv(void);
Fills in a structure of type struct lconv with the values
defined by the current locale. The members of this struc-
ture type must include at least those shown in the follow-
ing example. The sample values in parentheses are those
for Switzerland:
struct lconv {
// Information for non-currency values:
 char *decimal_point; // The decimal character
 // (".")
 char *thousands_sep; // The character used to group
 // digits left of the decimal
 // point (",")
 char *grouping; // Number of digits in each group
 // ("\3")
// Information for currency values:
 char *int_curr_symbol; // The three-letter symbol for
 // the local currency per ISO
 // 4217, with a separator
 // character ("CHF ")
 char *currency_symbol; // The local currency
 // symbol ("SFrs.")
 char *mon_decimal_point; // The decimal point character
 // for currency strings (".")
 char *mon_thousands_sep; // The character used to group
 // digits left of the decimal
 // point (".")

Internationalization | 119

 char *mon_grouping; // Number of digits in each group
 // ("\3")
 char *positive_sign; // Sign for positive
 // currency strings ("")
 char *negative_sign; // Sign for negative
 // currency strings ("C")
 char int_frac_digits; // Number of digits after the
 // decimal point in the
 // international format (2)
 char frac_digits; // Number of digits after the
 // decimal point in the local
 // format (2)
 char p_cs_precedes; // For non-negative values:
 // 1 = currency symbol is before,
 // 0 = after the amount (1)
 char p_sep_by_space; // For non-negative values:
 // 1 = space, 0 = no space
 // between currency
 // symbol and amount (0)
 char n_cs_precedes; // For negative values:
 // 1 = currency symbol is before,
 // 0 = after the amount (1)
 char n_sep_by_space; // For negative values:
 // 1 = space, 0 = no space
 // between currency
 // symbol and amount (0)
 char p_sign_posn; // Position of positive_sign (1)
 char n_sign_posn; // Position of negative_sign (2)
 char int_p_cs_precedes; // For non-negative
 // internationally formatted
 // values:
 // 1 = currency symbol precedes
 // amount, 0 = currency symbol
 // follows amount (1)
 char int_p_sep_by_space; // For non-negative
 // internationally formatted
 // values:
 // 1 = space, 0 = no space
 // between currency symbol
 // and amount (0)
 char int_n_cs_precedes; // For negative internationally
 // formatted values:
 // 1= currency symbol precedes
 // amount, 0 = currency symbol
 // follows amount (1)
 char int_n_sep_by_space; // For negative internationally
 // formatted values:

120 | C Pocket Reference

 // 1 = space, 0 = no space
 // between symbol and amount (0)
 char int_p_sign_posn; // Position of positive sign for
 // internationally formatted
 // values (1)
 char int_n_sign_posn; // Position of negative sign for
 // internationally formatted
 // values (2)
};

If the value of p_sign_posn, n_sign_posn, int_p_sign_posn,
or int_n_sign_posn is 0, the amount and the currency symbol
are set in parentheses. If 1, the sign string is placed before the
amount and the currency symbol. If 2, the sign string is placed
after the amount and the currency symbol. If 3, the sign string
immediately precedes the currency symbol. If 4, the sign string
is placed immediately after the currency symbol.

The value \3 in the strings grouping and mon_grouping means
that each group consists of three digits, as in “1,234,567.89”.

121

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

Index

Symbols
& (ampersand)

address operator, 26, 49
bitwise AND operator, 24

&& (logical AND operator), 23
* (asterisk)

complex declarations
operator, 40

declaring pointer variables, 52
indirection operator, 26
multiplication operator, 20

^ (caret) bitwise exclusive OR
operator, 24

, (comma) sequence
operator, 27

?: (conditional operator), 19, 27
. (dot operator), 26, 46
... (three dots), optional

argument indicator, 62
" " (double quotes), used in string

literals, 17
! (logical NOT operator), 24
!= (not-equal-to operator), 23
(hash mark)

hash or stringizing
operator, 66

preprocessing directives, 4, 66

(double-hash or token-
pasting operator), 67

- (minus) subtraction
operator, 20

- (unary) negative sign, 20
- - decrement operator, 20
() (parentheses), 40, 53

arithmetic expressions, 18
() function call operator, 27
% (percent sign) modulo division

operator, 20
| (pipe) bitwise OR operator, 24
|| (logical OR operator), 24
+ (plus) addition operator, 20
+ (unary) positive sign, 20
++ increment operator, 20
/ (slash) division operator, 20
//, /*, and */, comment

delimiters, 4
[] (square brackets)

complex declarations
operator, 40

subscript operator, 26
~ (tilde) bitwise NOT

operator, 25
< (less-than operator), 23
<< (shift left operator), 25

122 | Index

<= (less-than-or-equal-to
operator), 23

= (equal sign) simple assignment
operator, 21

= = (equal-to operator), 23
-> (arrow operator), 26, 46
> (greater-than operator), 23
>= (greater-than-or-equal-to)

operator, 23
>> (shift right operator), 25

A
abort() function, 113
abs() function, 91
accessing files, functions

for, 76–79
accessing objects in

memory, 25–27, 46
acos() function, 92
acosh() function, 93
addition operator (+), 20
address constants, 52
address operator (&), 26, 49
aggregate types, 43
ANSI C99 standard, 2

_Bool integer type, 10
byte-oriented vs. wide-

oriented files, 75
complex floating types, 13
conversion specifiers, 83, 86
DECIMAL_DIG macro, 89
declaration/statement order in

blocks, 32, 39
floating-point

environment, 98–101
floating-point numbers,

categories of, 90
inline functions, 60
mathematical functions for

real numbers, 93
error handling, 97

optimizing runtime
efficiency, 94

restrict type qualifier, 56
variable-length arrays, 49
wchar_t (wide character

type), 6
arguments

in function calls, 61
variable numbers of, in

functions, 62–64
arithmetic operations

optimizing runtime
efficiency, 94

on pointers, 53–55
arithmetic operators, 20
arithmetic types, 43
arrays, 49–52

addressing elements of, 26
initializing, 51
multi-dimensional, 50

initializing, 52
pointer arithmetic, 53–55
vs. pointers, 51

arrow operator (->), 26, 46
asctime() function, 112
asin() function, 92
asinh() function, 93
assert() function, 116
assert.h header file, 73
assignment expressions, 22
assignment operators, 21
atan() function, 92
atan2() function, 92
atanh() function, 93
atoi() function, 105
auto storage class specifier, 42
automatic storage duration, 41

structure variables and, 46

B
basic character sets, 5
binary operators, 19
bit-fields, 48

vs. integer variables, 49
bitwise operators, 24

Index | 123

block read/write functions, 80
block scope, 8

of variables, 41
blocks (compound

statements), 32
_Bool integer type, 10
break statement, 38
bsearch() function, 109
btowc() function, 103
byte-oriented files, 75

C
C programs, structure of, 3
cabs() function, 95
cacos() function, 95
cacosh() function, 95
calloc() function, 110
carg() function, 95
case mapping of characters, 101
casin() function, 95
casinh() function, 95
cast operator, 27

type conversions and, 29
catan() function, 95
catanh() function, 95
cbrt() function, 93
ccos() function, 95
ccosh() function, 95
ceil() function, 92
cexp() function, 95
char type, 9

value ranges of, 87
character constants, 16
character sets, 4–6
characters

case mapping, 101
classifying, 101
read/write functions for, 79

cimag() function, 96
classifying characters, 101
clearerr() function, 76
clock() function, 111

CLOCKS_PER_SEC
constant, 111

clog() function, 95
comma operator (,), 27
comments, 4
complex declarations, 40
complex floating types, 13

mathematical functions
for, 95

complex macro, 96
complex types, macros for, 96
complex.h header file, 73, 95
_Complex_I macro, 96
compound assignment

operator, 21
compound statements

(blocks), 32
conditional jumps, 33
conditional operator (?:), 19, 27
conj() function, 95
const type qualifier, 55
constants, 14–18
continue statement, 37
control modes and floating-point

arithmetic, 98
controlling expressions and loop

iterations, 35
conversion specifications

for printf() functions, 81–84
for scanf() functions, 85–87

conversion specifiers
for formatted output, 82
introduced in ANSI C99, 83

copysign() function, 93
cos() function, 92
cosh() function, 92
cpow() function, 95
cproj() function, 96
creal() function, 96
csin() function, 95
csinh() function, 95
csqrt() function, 95
ctan() function, 95

124 | Index

ctanh() function, 95
ctime() function, 112
ctype.h header file, 73, 101
CX_LIMITED_RANGE

pragma, 72, 96

D
date and time functions, 111
_ _DATE_ _ macro, 72
DBL_MANT_DIG macro, 89
DBL_MAX_EXP macro, 89
DBL_MIN_EXP macro, 89
decimal constants, 14
DECIMAL_DIG macro, 89
declarations, 39–40

function prototypes, 58
scope of, 8
type conversions and, 62

simple vs. complex, 40
syntax of, 39

decrement operator (- -), 20
#define directive, 66

enumeration constants as
alternative to, 44

defined operator, 70
delimiters for comments (//, /*,

and */), 4
derived types, 43–57
difftime() function, 111
div() function, 91
division operator (/), 20
do...while statement, 35
dot operator (.), 26, 46
double _Complex type, 13
double _Imaginary type, 13
double complex type,

mathematical functions
for, 95

double quotes (" "), used in string
literals, 17

double type, 11
complex functions for, 95

new conversion specifiers
for, 83

range and precision of, 88
double values

new mathematical functions
for, 93

traditional mathematical
functions for, 92

double_t type and FLT_EVAL_
METHOD macro, 94

double-hash operator (##), 67
dynamic memory

management, 110

E
EDOM macro, 97
#elif directive, 69
#else directive, 69
empty statement, 32
#endif directive, 69
enum keyword, 43
enumeration types, 43
ERANGE macro, 97
erf() function, 93
erfc() function, 93
errno (global error variable), 97
errno.h header file, 73
error handling

for mathematical
functions, 97

for I/O functions, 76
for system functions, 116

escape sequences, 5
used in character

constants, 17
exceptions, floating-point, 98
execution character sets, 5
exit() function, 113
EXIT_FAILURE constant, 113
EXIT_SUCCESS constant, 113
exp() function, 92
exp2() function, 93
explicit type conversions, 29

Index | 125

expm1() function, 93
exponent notation and floating

constants, 16
exponents in floating-point

numbers, 12
expression statements, 32
expressions

function calls, 61
operators and, 18–29
type conversions, 29–30

extended character set, 6
extern storage class specifier, 42,

59
external linkage for

identifiers, 64
external names, 7

function definitions and, 60
restrictions imposed by

linkers, 65

F
fabs() function, 92
fclose() function, 76
fdim() function, 93
FE_ALL_EXCEPT macro, 98
FE_DFL_ENV macro, 100
FE_DIVBYZERO macro, 98
FE_DOWNWARD macro, 99
FE_INEXACT macro, 98
FE_INVALID macro, 98
FE_OVERFLOW macro, 98
FE_TONEAREST macro, 99
FE_TOWARDZERO macro, 99
FE_UNDERFLOW macro, 98
FE_UPWARD macro, 99
feclearexcept() function, 99
fegetenv() function, 100
fegetexceptflag() function, 99
fegetround() function, 100
feholdexcept() function, 100
fenv.h header file, 73, 98
FENV_ACCESS pragma, 72,

100

fenv_t type, 100
feof() function, 76
feraiseexcept() function, 99
ferror() function, 77
fesetenv() function, 100
fesetexceptflag() function, 99
fesetround() function, 100
fetestexcept() function, 99
feupdateenv() function, 100
fexcept_t type, 98
fflush() function, 77
fgetc() function, 79
fgetpos() function, 77
fgets() function, 79
field length, specifying, 81
_ _FILE_ _ macro, 72
file pointers, 74
file position and read/write

operations, 75
file scope, 9

of variables, 41
FILE structure, 74
files

accessing, 76–79
byte-oriented vs. wide-

oriented, 75
reading from/writing

to, 79–87
error handling, 76

fixed-width integer variables
conversion specifiers for, 86
value ranges of integer

types, 88
float _Complex type, 13
float _Imaginary type, 13
float type, 11

range and precision of, 88
float.h header file, 12, 73, 88
float_t type and FLT_EVAL_

METHOD macro, 94
floating constants, 16

126 | Index

floating types
complex, 13

mathematical functions
for, 95

real, 11
mathematical functions

for, 92–94
range and precision of, 12,

88
floating-point

environment, 98–101
floating-point exceptions,

macros for, 98
floating-point numbers

categories of, 90
formatting output of, 81
macros for classifying, 90
macros for comparing, 93
optimizing runtime

efficiency, 94
type-generic macros and, 96

floor() function, 92
FLT_DIG macro, 89
FLT_EPSILON macro, 89
FLT_EVAL_METHOD

macro, 94
FLT_MANT_DIG macro, 89
FLT_MAX macro, 89
FLT_MAX_10_EXP macro, 89
FLT_MAX_EXP macro, 89
FLT_MIN macro, 89
FLT_MIN_10_EXP macro, 89
FLT_MIN_EXP macro, 89
FLT_RADIX macro, 88
FLT_ROUNDS macro, 88
fma() function, 93
fmax() function, 93
fmin() function, 93
fmod() function, 92
fopen() function, 77
for loop, 36
formatted input, functions

for, 84–87

formatted output, functions
for, 80–84

FP_CONTRACT pragma, 72,
94

FP_FAST_FMA macro, 95
FP_FAST_FMAF macro, 95
FP_FAST_FMAL macro, 95
FP_ILOGB0 macro, 98
FP_ILOGBNAN macro, 98
FP_INFINITE macro, 90
FP_NAN macro, 90
FP_NORMAL macro, 90
FP_SUBNORMAL macro, 90
FP_ZERO macro, 90
fpclassify() macro, 90
fprintf() function, 80
fputc() function, 79
fputs() function, 79
fread() function, 80
free() function, 111
freopen() function, 77
frexp() function, 92
fscanf() function, 84
fseek() function, 77
fsetpos() function, 77
ftell() function, 77
_ _func_ _ macro, 72
function call operator (), 27
function calls, 61
function definitions, 59–61
function pointers, 55
function prototypes, 58

scope of, 8
type conversions and, 62

function scope, 8
functions, 2, 57–64

block read/write, 80
case mapping, 102
character classification, 101
character read/write, 79
declaring, 57

Kernighan-Ritchie vs.
prototype style, 60

Index | 127

file access, 76–79
file I/O, 79–87

error handling for, 76
mathematical, 91–101
parameters of, 60
passing arguments to, 61
time and date, 111
with variable numbers of

arguments, 62–64
fwide() function, 75
fwrite() function, 80

G
getc() function, 79
getchar() function, 79
getenv() function, 113
gets() function, 79
gmtime() function, 112
goto statement, 37, 115
graphic characters, inputting,

using trigraph
sequences, 6

H
hash mark (#)

hash or stringizing
operator, 66

preprocessing directives, 4, 66
header files, 4

in ANSI C library, 73
#include directives and, 68

hexadecimal constants, 14
HUGE_VAL macro, 97
HUGE_VALF macro, 97
HUGE_VALL macro, 97
hypot() function, 93

I
I macro, 96
identifiers, 6

categories of, 7

linkage of, 64
scope of, 8

#if directive, 69
if...else statement, 33
#ifdef directive, 70
#ifndef directive, 70
ilogb() function, 93, 98
imaginary macro, 96
imaginary numbers and complex

floating types, 13
_Imaginary_I macro, 96
imaxabs() function, 92
imaxdiv() function, 92
implicit type conversions, 29
#include directive, 4, 68
INCLUDE environment

variable, 68
increment operator (++), 20
indirection operator (*), 26, 53
INFINITY constant, 90
initializing

arrays, 51
structure variables, 46
unions, 47
variables, 42

inline functions, 60
int type, 9

value ranges of, 87
int_fastN_t integer type, 11
int_leastN_t integer type, 11
integer constants, 14
integer promotion, 29, 62
integer types, 9–11

conversion specifiers for
printf() format
strings, 84

with defined width, 11
mathematical functions

for, 91
value ranges of, 87

integers
formatting input of, 86
formatting output of, 82

128 | Index

internal linkage for
identifiers, 64

internationalization, 116–120
INTMAX_C() macro, 15
intmax_t integer type, 11
INTN_C() macro, 15
intN_t integer type, 11
intptr_t integer type, 11
inttypes.h header file, 73, 92,

106
I/O and ANSI C library, 74–87
isalnum() function, 101
isalpha() function, 101
isblank() function, 102
iscntrl() function, 102
isdigit() function, 101
isfinite() macro, 90
isgraph() function, 101
isgreater() macro, 94
isgreaterequal() macro, 94
isinf() macro, 90
isless() macro, 94
islessequal() macro, 94
islessgreater() macro, 94
islower() function, 101
isnan() macro, 90
isnormal() macro, 90
ISO/IEC 9899 standard, 2
iso646.h header file, 28, 73
isprint() function, 101
ispunct() function, 102
isspace() function, 101
isunordered() macro, 94
isupper() function, 101
iswctype() function, 102
iswlower() function, 103
isxdigit() function, 101

J
jumps

conditional, 33
local vs. non-local, 115
unconditional, 37

K
Kernighan, Brian, 1
Kernighan-Ritchie style of

function declaration, 60
keywords, list of, 7

L
labs() function, 92
LC_ALL locale category, 117
LC_COLLATE locale

category, 117
LC_CTYPE locale category, 117
LC_MONETARY locale

category, 117
LC_NUMERIC locale

category, 117
LC_TIME locale category, 117
LDBL_MANT_DIG macro, 89
LDBL_MAX_EXP macro, 89
LDBL_MIN_EXP macro, 89
ldexp() function, 92
ldiv() function, 92
lgamma() function, 93
limits.h header file, 10, 73

value ranges of integer
types, 87

#line directive, 71
_ _LINE_ _ macro, 72
linkage of identifiers, 64
llabs() function, 92
lldiv() function, 92
llrint() function, 93
llround() function, 93
locale categories, 117
locale.h header file, 73, 116
localeconv() function, 118–120
localtime() function, 112
log() function, 92
log10() function, 92
log1p() function, 93
log2() function, 93
logb() function, 93

Index | 129

logical operators, 23
long double _Complex type, 13
long double _Imaginary type, 13
long double type, 11

conversion specifiers for, 83
range and precision of, 88

long int type, 9
long long int type, 9
long long type

value ranges of, 87
long type

value ranges of, 87
longjmp() function, 115
loops, 35–37
lrint() function, 93
lround() function, 93

M
macros

for complex types, 96
defining, 66
for integer constants of min/

max widths, 15
predefined, 72
type-generic, 96

main() function, 2, 57, 113
malloc() function, 110
mandatory arguments, 62
mantissa (floating-point

numbers), 12
mapping case of characters, 101
math.h header file, 73, 90, 93
math_errhandling macro, 101
mathematical functions, 91–101

for complex floating types, 95
error handling for, 97
for integer types, 91
for real floating types, 92–94

matrices (two-dimensional
arrays), 51

MB_CUR_MAX macro, 107
mblen() function, 107
mbsinit() function, 108

mbstate_t type, 76, 108
mbstowcs() function, 108
mbtowc() function, 108
members

of structures, 45–47
of unions, 47

memchr() function, 109
memcmp() function, 109
memcpy() function, 109
memmove() function, 110
memory accessing

operators, 25–27
memory blocks

managing, 109
dynamically, 110

memset() function, 110
modf() function, 92
modulo division operator

(%), 20
multibyte characters, 6

converting into, 107
multi-dimensional arrays, 50

initializing, 52
multiplication operator (*), 20

N
NAN (Not a Number)

constant, 91
NDEBUG macro, 116
nearbyint() function, 93
nextafter() function, 93
nexttoward() function, 93
non-local jumps, 115
null pointers, 53
numbers, converting between

strings and, 105–107

O
octal constants, 14
offsetof macro, 46
operating systems,

communicating
with, 113

130 | Index

operators, 18–29
alternative notation for, 28
arithmetic, 20
assignment, 21
bitwise, 24
for complex declarations, 40
logical, 23
memory accessing, 25–27
precedence of, 18
relational, 23
symbolic constants for, 28

optimizing efficiency of floating-
point operations, 94

optional arguments, 62–64
orientation of files, setting, 75

P
parameters of functions, 60
perror() function, 78, 116
pointers, 52–55

arithmetic operations
on, 53–55

restrict type qualifier, 56
to structures, 46
type conversions in, 30
type qualifiers and, 56
vs. arrays, 51

polar coordinates, representing
imaginary numbers, 13

postfix notation, 21
pow() function, 92
#pragma directive, 72
precedence of operators, 18
predefined standard macros, 72
predefined types, 9–14
prefix notation, 21
preprocessing directives, 4,

65–73
printf() function, 80

conversion specification
for, 81–84

process control, 113–116
sending signals, 114–115

promoting integers, 29, 62
prototype style of function

declaration, 60
prototypes, function (see

function prototypes)
ptrdiff_t type, 74
pure imaginary numbers, 13
putc() function, 79
putchar() function, 79
puts() function, 79

Q
qsort() function, 108
qualifying object types, 55–57
quiet NANs, 91

R
raise() function, 114
rand() function, 91
read/write operations and file

position, 75
reading from files, functions

for, 79–87
error handling, 76

real floating types, 11
mathematical functions

for, 92–94
range and precision of, 12, 88

realloc() function, 110
records, structure of, 45–47
recursive functions, 60
recursive structures, 47
reference declaration, 64
register storage class

specifier, 42
relational operators, 23
remainder() function, 93
remove() function, 78
remquo() function, 93
rename() function, 78
restrict type qualifier, 56
return statement, 38

Index | 131

rewind() function, 78
Richards, M., 1
rint() function, 93
Ritchie, Dennis, 1
round() function, 93
rounding behavior,

controlling, 99

S
scalar types, 43
scalbln() function, 93
scalbn() function, 93
scanf() function, 84

conversion specification
for, 85–87

scanlists, 86
scope of identifiers, 8
search utility, 108
sequence operator (,), 27
setbuf() function, 78
setjmp() macro, 115
setjmp.h header file, 73, 115
setlocale() function, 117
setvbuf() function, 78
short int type, 9
short type

value ranges of, 87
showPage() function, 3
sig_atomic_t type, 115
SIG_DFL constant, 115
SIG_IGN constant, 115
SIGABRT macro, 114
SIGFPE macro, 114
SIGILL macro, 114
SIGINT macro, 114
signal() function, 115
signal.h header file, 73, 114
signaling NANs, 91
signals, sending to

processes, 114–115
signbit() macro, 90
signed char type, 9

value ranges of, 87

signed integer types, 9
SIGSEGV macro, 114
SIGTERM macro, 114
simple assignment operator, 21
simple declarations, 40
sin() function, 92
sinh() function, 92
size_t type, 74
sizeof operator, 27

arrays and, 51
obtaining storage size of

structures with, 46
snprintf() function, 107
sort utility, 108
source character sets, 4
source files, 3
sprintf() function, 106
sqrt() function, 92
srand() function, 91
sscanf() function, 107
standard header files, 73
standard library, contents

of, 73–120
statements, 3, 31–38

in function body, 60
static storage class specifier, 42,

59
static storage duration, 41
status flags, handling floating-

point exceptions, 98
_ _STD_HOSTED_ _ macro, 73
_ _STD_VERSION_ _

macro, 73
stdarg.h header file, 63, 73
stdbool.h header file, 10, 73
_ _STDC_ _ macro, 72
stddef.h header file, 46, 73
stdin/stdout/stderr file

pointers, 75
stdint.h header file, 11, 73, 84

value ranges of integer
types, 88

132 | Index

stdio.h header file, 73
file access functions, 76–79
file I/O functions, 79–87

stdlib.h header file, 73, 107
converting between strings

and numbers, 105
dynamic memory

management, 110
storage classes

determining linkage of
identifiers, 65

of functions, 59
of variables, 41–43

storage durations for
variables, 41

strcat() function, 103
strchr() function, 103
strcmp() function, 103
strcoll() function, 104
strcpy() function, 104
strcspn() function, 104
strerror() function, 116
strftime() function, 112
string literals, 17
string.h header file, 73, 103
strings, 50, 103–108

converting between numbers
and, 105–107

formatting input of, 85
formatting output of, 81
read/write functions for, 79

strlen() function, 104
strncat() function, 104
strncmp() function, 104
strncpy() function, 104
strpbrk() function, 104
strrchr() function, 105
strspn() function, 105
strstr() function, 105
strtod() function, 106
strtoimax() function, 106
strtok() function, 105
strtol() function, 106

strtoll() function, 106
strtoul() function, 106
strtoull() function, 106
strtoumax() function, 106
struct keyword, 45
structure types, 45–47
structures and bit-fields, 48
strxfrm() function, 105
subscript operator ([]), 26
subtraction operator (-), 20
switch statement, 34
symbolic constants, 66

for operators, 28
system() function, 113

T
tags

in enumerations, 44
in structures, 45–47
in unions, 47

tan() function, 92
tanh() function, 92
ternary operators, 19
tgamma() function, 93
tgmath.h header file, 73, 96
Thompson, K., 1
time and date functions, 111
_ _TIME_ _ macro, 72
time() function, 111
time.h header file, 73, 111
tmpfile() function, 78
tmpnam() function, 79
token-pasting operator (##), 67
tokens, 4
tolower() function, 102
toupper() function, 102
towctrans() function, 102
towupper() function, 103
translation units, 4
trigraph sequences, 6
trunc() function, 93
(type) cast operator, 27

type conversions and, 29

Index | 133

type conversions, 29–30
in assignments and

pointers, 30
function arguments and, 62

type definitions, 57
type qualifiers, 55–57
type specifier void, 13

function prototypes and, 58
type conversions and, 30

typedef keyword, 57
type-generic macros, 96
types, 9–14

aggregate, 43
arithmetic, 43
commonly used (ANSI C

library), 74
derived, 43–57
enumeration, 43
floating (see floating types)
integer (see integer types)
predefined, 9–14
scalar, 43
structure, 45–47

U
UINTMAX_C() macro, 15
uintmax_t type, 11
UINTN_C() macro, 15
unary operators, 19
unconditional jumps, 37
#undef directive, 68
ungetc() function, 79
Unicode character encoding, 6
union keyword, 47
unions, 47

bit-fields and, 48
unsigned char type, 9
unsigned int type, 10
unsigned integer types, 9
unsigned long long type, 10
unsigned long type, 10
unsigned short type, 10
usual arithmetic conversions, 30

V
va_arg macro, 63
va_end macro, 63
va_list type, 63, 107
va_start macro, 63, 107
value ranges

of floating types, 12, 88
of integer types, 87

variable-length arrays, 50
variables, 41–43

enumeration types and, 44
initializing, 42
pointers and, 52–55
storage classes of, 41–43
structure types and, 45–47
type qualifiers and, 55

vfprintf() function, 80
vfscanf() function, 84
void type specifier, 13

function prototypes and, 58
type conversions and, 30

volatile type qualifier, 55
vprintf() function, 80
vscanf() function, 85
vsnprintf() function, 107
vsprintf() function, 107
vsscanf() function, 107

W
wchar.h header file, 73

character read/write
functions, 79

classification and mapping
functions, 103

wchar_t type, 6, 50, 74, 107
wcsftime() function, 112
wcstombs() function, 108
wctob() function, 103
wctomb() function, 108
wctrans() function, 102
wctype() function, 102
wctype.h header file, 73, 102

134 | Index

while statement, 35
wide character type (wchar_

t), 6, 50, 74, 107
wide string literals, 18, 50
wide-oriented files, 75
wint_t type, 74
writing to files, functions

for, 79–87
error handling, 76

	Contents
	Introduction
	Font Conventions

	Fundamentals
	C Program Structure
	Character Sets
	Identifiers
	Categories and Scope of Identifiers

	Basic Types
	Integer Types
	Real and Complex Floating Types
	Internal representation of a real floating-point number
	Complex floating types

	The Type void

	Constants
	Integer Constants
	Floating Constants
	Character Constants and String Literals

	Expressions and Operators
	Arithmetic Operators
	Assignment Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Memory Accessing Operators
	Other Operators
	Alternative notation for operators

	Type Conversions
	Integer Promotion
	Usual Arithmetic Conversions
	Type Conversions in Assignments and �Pointers

	Statements
	Block and Expression Statements
	Jumps
	if ... else
	switch

	Loops
	while
	do ... while
	for

	Unconditional Jumps
	goto
	continue
	break
	return

	Declarations
	General Syntax and Examples
	Complex Declarations

	Variables
	Storage Classes
	Initialization

	Derived Types
	Enumeration Types
	Structures, Unions, and Bit-Fields
	Unions
	Bit-fields

	Arrays
	Pointers
	Pointer arithmetic
	Function pointers

	Type Qualifiers and Type Definitions
	restrict
	typedef

	Functions
	Function Prototypes
	Function Definitions
	Function Calls
	Functions with Variable Numbers of Arguments

	Linkage of Identifiers
	Preprocessing Directives
	#define
	#undef
	#include
	#if, #elif, #else, #endif
	The defined operator
	#ifdef and #ifndef
	#line
	#pragma

	Standard Library
	Standard Header Files
	Input and Output
	Error Handling for Input/Output Functions
	General File Access Functions
	File Input/Output Functions
	Reading and writing characters and strings
	Block read and write functions
	Formatted output
	Formatted input

	Numerical Limits and Number Classification
	Value Ranges of Integer Types
	Range and Precision of Real Floating Types
	Classification of Floating-Point Numbers

	Mathematical Functions
	Mathematical Functions for Integer Types
	Mathematical Functions for Real Floating Types
	Optimizing Runtime Efficiency
	Mathematical Functions for Complex Floating Types
	Type-Generic Macros
	Error Handling for Mathematical Functions
	The Floating-Point Environment

	Character Classification and Case Mapping
	String Handling
	Conversion Between Strings and Numbers
	Multibyte Character Conversion

	Searching and Sorting
	Memory Block Management
	Dynamic Memory Management
	Time and Date
	Process Control
	Communication with the Operating System
	Signals
	Non-Local Jumps
	Error Handling for System Functions

	Internationalization
	Index

