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Foreword

“Everything old is new again” is a commonly heard phrase that has described every‐
thing from fashion, to politics, to technology. It is also an apt statement when it
comes to Linux containers, and I would expand upon it to say, “Everything old is new
again—and nonetheless exciting.”

Containers have been available for many years in Linux distributions but they’ve sel‐
dom been used because of the complexity required to build something that worked.
Thus historically, Linux container implementations have been purpose-built with a
single objective in mind, which made additional requirements like scaling and porta‐
bility challenging—if not impossible—to implement.

Enter Docker, which has created phenomenal momentum in unlocking the value of
Linux containers by combining a standardized packaging format with ease of use, to
turn processes that were once esoteric and incomprehensible into consumable capa‐
bilities for developers and operations teams. Docker, in a sense, has created a Renais‐
sance for Linux containers, driving an ever-growing wave of interest and possibility,
leading to rapid adoption of the technology. It’s helping technology teams everywhere
realize the benefits of application portability, simplified integration, and streamlined
development as promised by Linux containers for some time but historically trapped
behind layers of complexity.

Through Docker, Linux containers have catapulted into an elite club of truly disrup‐
tive technologies with the power to transform the IT landscape, related ecosystems,
and markets. In the wake of this emergence rises a wave of innovation that demon‐
strates Linux containers’ potential to dramatically change application delivery across
a variety of computing environments and platforms while leveraging a spectrum of
tehcnical skill sets.

Innovation doesn’t necessarily mean the introduction of a completely new, world-
altering technology. Like many of its predecessors, Docker’s success stands on the
shoulder of giants. It builds on years of technological innovation and Linux evolution
that now provides the core capabilities which Docker makes easy to use. The maturity

xi



of the Linux capabilities exploited by Docker can now be replicated in other operat‐
ing systems, allowing Docker to function beyond its Linux roots.

Docker is facilitating a disruptive change in the minds of technology professionals. It
has reshaped views on which aspects of application development and delivery, as well
as infrastructure management should be considered “table stakes” versus complexity
that requires technology or process solutions. As is typical for the early adoption
phase of any disruptive technology, these perspective changes aim at what’s right in
front of us, often oversimplifying and ignoring relevant aspects – but the potential for
Docker and Linux containers goes much deeper than simply redefining development.
It is redifing the very nature of the application itself.

The obvious impact of Docker and the ease of use it brings to Linux containers is the
possibility to redefine the organizational divide between business, application devel‐
opment, and IT infrastructure teams. In a sense, Docker provides a tangible technol‐
ogy for implementing DevOps, which is the merger (or at least an armistice) between
the often competing teams of development and operations. Containerization mod‐
ernizes IT environments and, at an organizational level, allows for “proper” owner‐
ship of the technology stack and processes, reducing handovers and the costly change
coordination that comes with them.

Docker’s role as both a packaging format for the application and a unifying interface
and methodology enables the application team to own the Docker-formatted con‐
tainer image, including all dependencies, while allowing operations to retain infra‐
structure ownership. With a standardized container infrastructure in place, the IT
organization can then focus on building and managing deployments, meeting their
security standards, automation needs, skill levels and ultimately cost profile, all
without losing the ability to hold the application team accountable for the security
and cost impact of their code that is deployed inside the container.

Docker also brings with it greater efficiencies of scale and performance—by shrinking
application footprints through Docker-formatted containers, system-level dependen‐
cies are reduced to a bare minimum, often dozens-to-hundreds of megabytes in size.
Compare this to traditional virtual machine images, which typically consume giga‐
bytes of storage…but when you factor in performance, it goes beyond simply being
innovative and becomes truly disruptive.

Starting a container takes milliseconds—quite a difference compared to the minutes
most users experience with virtual machines. Deploying container images is faster if
less data needs to travel over networks and storage fabrics, so modern, elastic applica‐
tions with frequent state changes and dynamic allocation of resources can be built far
more efficiently if the rollout of changes can happen extremely quickly and resource
needs can be fulfilled in real time.
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But perhaps the greatest innovation and most significant impact delivered by Docker
and Linux containers is the fundamental change to application consumption. The
monolithic application stack as we know it can be broken into dozens or even hun‐
dreds of tiny, single-minded applications that, when woven together, perform the
same function as the traditional application. The benefit, however, is that these pieces
can be rewritten, reused, and managed far more efficiently than monolithic applica‐
tions, delivering a truly composite application built entirely of microservices.

Containers represent the way forward for the application development world, but it’s
critical that we do not lose sight of the old as we bring in the new. Docker and Linux
containers are not without challenges. Management, security, and certification are
three of the most glaring challenges to enterprise adoption, and these concerns are
not so dissimilar from more traditional applications. Obviously, containers must be
deployed on a secure host, but, more importantly, container security will be defined
by what is in a given container—is it free of vulnerabilities, malware, and known
exploits? Having the appropriate signature on a given containerized application, from
a trusted, certified source goes a long way towards effectively answering these ques‐
tions.

Additionally, management is paramount when it comes to the new world of contain‐
erized applications and Docker. The potential for sheer sprawl with containers is
exponentially greater than that of virtual machines. Managing all of the containers is
one challenge, but just as important, much like security, will be managing the content
inside these containers. How are updates and rollbacks handled? What of orchestra‐
tion? What will define “sprawl”? When do containers need to be retired or archived,
else spend a life of limbo on a aging server? These too are questions that the enter‐
prise must see addressed before mission critical can be applied to containerized appli‐
cations.

These challenges aside, Linux containers do represent a fundamental shift in how the
enterprise world creates, consumes, and manages applications. While the traditional
monolithic application is likely to remain (lots of old technology survives as a legacy
still today), containers have huge potential to modernize the operational model for
these traditional applications and, alongside new, container-based applications, allow
for incredible flexibility, portability, and efficiency across the datacenter and hybrid
clouds.
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Sean and Karl have worked with Linux containers (and Docker) for years, and have,
in this book, captured what the IT world needs to know about Docker and the con‐
tainer Renaissance. Leveraging their insights, the authors provide a solid overview of
how Docker actually works in the real world and how developers and other IT pro‐
fessionals can best utilize Docker and Linux containers in a way that makes sense for
them and their organization.

—Lars Herrmann, General Manager
for Enterprise Linux, Enterprise Virtu‐

alization and Container Strategy,
Red Hat
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Preface

This book will get you to the point where you have a running Docker environment
and steer you towards good choices for a production environment. Along the way
we’ll explore building applications for Docker, testing, deploying, and debugging a
running system. We’ll stop by to see a few of the orchestration tools and platforms in
the Docker ecosystem. And we’ll round out with guidance on security and best prac‐
tices for your container environment.

Who Should Read This Book
This book is intended for anyone who is looking to solve the complex workflow prob‐
lems involved in developing and deploying software to production at scale. If you’re
interested in Docker, Linux containers, DevOps, and large, scalable, software infra‐
structures, then this book is for you.

Why Read This Book?
Today there are many conversations, projects, and articles on the Internet about
Docker. So why should you devote precious hours to reading this book?

Even though there is a lot of information out there, Docker is a new technology and it
is evolving very quickly. Even during the time that that it took us to write this book,
Docker, Inc., released four versions of Docker plus a few major tools into their eco‐
system. Getting your arms around the scope of what Docker provides, understanding
how it fits into your workflow, and getting integration right are not trivial tasks. Few
companies or engineering teams have been running it in production for more than a
year.

We have worked for over a year and a half building and operating a production
Docker platform within the Site Engineering team at New Relic. We implemented
Docker in production only months after its release and can share with you some of
the experience we gained from evolving our production platform over the last year
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and a half. The goal is for you to enjoy the wins while avoiding many of the bumps in
the road that we experienced. Even though the online documentation for the Docker
project is useful, we attempt to give you a bigger picture and expose you to many of
the best practices that we have learned along the way.

When you finish this book, you should have enough information to understand what
Docker is, why it’s important, how to get it running, how to deploy your applications
with it, and be armed with a clear view of what you can do to get to production. It will
hopefully be a quick trip through an interesting technology with some very practical
applications.

Navigating This Book
This book is organized as follows:

• Chapters 1 and 2 provide an introduction to Docker, and explain what it is and
how you can use it.

• Chapter 3 takes you through the steps required to install Docker.
• Chapters 4 through 6 dive into the Docker client, images, and containers, explor‐

ing what they are and how you can work with them.
• Chapters 7 and 8 discuss the flow for getting your containers into production and

debugging them.
• Chapter 9 delves into deploying containers at scale in public and private clouds.
• Chapter 10 dives into advanced topics that require some familiarity with Docker

and can be important as you start to use Docker in your production environ‐
ment.

• Chapter 11 explores some of the core concepts that have started to solidify in the
industry about how to design the next generation of Internet-scale production
software.

• Chapter 12 wraps everything up and ties it with a bow. It includes a summary of
what you have and how it should help you improve the way you deliver and scale
software services.

We realize that many people don’t read technical books front to back and that some‐
thing like the preface is incredibly easy to skip, but if you’re still with us, here is a
quick guide to some different approaches to reading this book:

• If you are new to Linux containers, start at the beginning. The first two chapters
are intended to get your head around the basics of Docker and Linux containers,
including what they are, how they work, and why you should care.
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• If you want to jump right in and install and run Docker on your workstation,
then dive right into Chapters 3 and 4, which show you how to install Docker, cre‐
ate and download images, run containers, and much more.

• If you are already using Docker for development but need some help getting it
into production, consider starting with Chapters 7 through 10, which delve into
deploying and debugging containers, and many other advanced topics.

• If you are a software or platform architect, you might find Chapter 11 an interest‐
ing place to investigate, as we dive into some of the current thinking about
designing containerized applications and horizontally scalable services.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

Preface | xvii



This element indicates a warning or caution.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/docker-up-and-running.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.
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For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Introduction

The Birth of Docker
Docker was first introduced to the world—with no pre-announcement and little fan‐
fare—by Solomon Hykes, founder and CEO of dotCloud, in a five-minute lightning
talk at the Python Developers Conference in Santa Clara, California, on March 15,
2013. At the time of this announcement, only about 40 people outside dotCloud been
given the opportunity to play with Docker.

Within a few weeks of this announcement, there was a surprising amount of press.
The project was quickly open-sourced and made publicly available on GitHub, where
anyone could download and contribute to the project. Over the next few months,
more and more people in the industry started hearing about Docker and how it was
going to revolutionize the way software was built, delivered, and run. And within a
year, almost no one in the industry was unaware of Docker, but many were still
unsure what it was exactly, and why people were so excited about.

Docker is a tool that promises to easily encapsulate the process of creating a distribut‐
able artifact for any application, deploying it at scale into any environment, and
streamlining the workflow and responsiveness of agile software organizations.

The Promise of Docker
While ostensibly viewed as a virtualization platform, Docker is far more than that.
Docker’s domain spans a few crowded segments of the industry that include technol‐
ogies like KVM, Xen, OpenStack, Mesos, Capistrano, Fabric, Ansible, Chef, Puppet,
SaltStack, and so on. There is something very telling about the list of products that
Docker competes with, and maybe you’ve spotted it already. For example, most engi‐
neers would not say that virtualization products compete with configuration manage‐
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ment tools, yet both technologies are being disrupted by Docker. The technologies in
that list are also generally acclaimed for their ability to improve productivity and
that’s what is causing a great deal of the buzz. Docker sits right in the middle of some
of the most enabling technologies of the last decade.

If you were to do a feature-by-feature comparison of Docker and the reigning cham‐
pion in any of these areas, Docker would very likely look like a middling competitor.
It’s stronger in some areas than others, but what Docker brings to the table is a feature
set that crosses a broad range of workflow challenges. By combining the ease of appli‐
cation deployment tools like Capistrano and Fabric, with the ease of administrating
virtualization systems, and then providing hooks that make workflow automation
and orchestration easy to implement, Docker provides a very enabling feature set.

Lots of new technologies come and go, and a dose of skepticism about the newest
rage is always healthy. Without digging deeper, it would be easy to dismiss Docker as
just another technology that solves a few very specific problems for developers or
operations teams. If you look at Docker as a virtualization or deployment technology
alone, it might not seem very compelling. But Docker is much more than it seems on
the surface.

It is hard and often expensive to get communication and processes right between
teams of people, even in smaller organizations. Yet we live in a world where the com‐
munication of detailed information between teams is increasingly required to be suc‐
cessful. A tool that reduces the complexity of that communication while aiding in the
production of more robust software would be a big win. And that’s exactly why
Docker merits a deeper look. It’s no panacea, and implementing Docker well requires
some thought, but Docker is a good approach to solving some real-world organiza‐
tional problems and helping enable companies to ship better software faster. Deliver‐
ing a well-designed Docker workflow can lead to happier technical teams and real
money for the organization’s bottom line.

So where are companies feeling the most pain? Shipping software at the speed
expected in today’s world is hard to do well, and as companies grow from one or two
developers to many teams of developers, the burden of communication around ship‐
ping new releases becomes much heavier and harder to manage. Developers have to
understand a lot of complexity about the environment they will be shipping software
into, and production operations teams need to increasingly understand the internals
of the software they ship. These are all generally good skills to work on because they
lead to a better understanding of the environment as a whole and therefore encourage
the designing of robust software, but these same skills are very difficult to scale effec‐
tively as an organization’s growth accelerates.

The details of each company’s environment often require a lot of communication that
doesn’t directly build value in the teams involved. For example, requiring developers
to ask an operations team for release 1.2.1 of a particular library slows them down
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and provides no direct business value to the company. If developers could simply
upgrade the version of the library they use, write their code, test with the new ver‐
sion, and ship it, the delivery time would be measurably shortened. If operations peo‐
ple could upgrade software on the host system without having to coordinate with
multiple teams of application developers, they could move faster. Docker helps to
build a layer of isolation in software that reduces the burden of communication in the
world of humans.

Beyond helping with communication issues, Docker is opinionated about software
architecture in a way that encourages more robustly crafted applications. Its architec‐
tural philosophy centers around atomic or throwaway containers. During deploy‐
ment, the whole running environment of the old application is thrown away with it.
Nothing in the environment of the application will live longer than the application
itself and that’s a simple idea with big repercussions. It means that applications are
not likely to accidentally rely on artifacts left by a previous release. It means that
ephemeral debugging changes are less likely to live on in future releases that picked
them up from the local filesystem. And it means that applications are highly portable
between servers because all state has to be included directly into the deployment arti‐
fact and be immutable, or sent to an external dependency like a database, cache, or
file server.

This leads to applications that are not only more scalable, but more reliable. Instances
of the application container can come and go with little repercussion on the uptime
of the frontend site. These are proven architectural choices that have been successful
for non-Docker applications, but the design choices included in Docker’s own design
mean that Dockerized applications will follow these best practices by requirement
and that’s a good thing.

Benefits of the Docker Workflow
It’s hard to cohesively group into categories all of the things Docker brings to the
table. When implemented well, it benefits organizations, teams, developers, and oper‐
ations engineers in a multitude of ways. It makes architectural decisions simpler
because all applications essentially look the same on the outside from the hosting sys‐
tem’s perspective. It makes tooling easier to write and share between applications.
Nothing in this world comes with benefits and no challenges, but Docker is surpris‐
ingly skewed toward the benefits. Here are some more of the things you get with
Docker:

Packaging software in a way that leverages the skills developers already have.
Many companies have had to create positions for release and build engineers in
order to manage all the knowledge and tooling required to create software pack‐
ages for their supported platforms. Tools like rpm, mock, dpkg, and pbuilder can
be complicated to use, and each one must be learned independently. Docker
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wraps up all your requirements together into one package that is defined in a sin‐
gle file.

Bundling application software and required OS filesystems together in a single standar‐
dized image format.

In the past, you typically needed to package not only your application, but many
of the dependencies that it relied on, including libraries and daemons. However,
you couldn’t ever ensure that 100 percent of the execution environment was iden‐
tical. All of this made packaging difficult to master, and hard for many compa‐
nies to accomplish reliably. Often someone running Scientific Linux would resort
to trying to deploy a community package tested on Red Hat Linux, hoping that
the package was close enough to what they needed. With Docker you deploy your
application along with every single file required to run it. Docker’s layered images
make this an efficient process that ensures that your application is running in the
expected environment.

Using packaged artifacts to test and deliver the exact same artifact to all systems in all
environments.

When developers commit changes to a version control system, a new Docker
image can be built, which can go through the whole testing process and be
deployed to production without any need to recompile or repackage at any step
in the process.

Abstracting software applications from the hardware without sacrificing resources.
Traditional enterprise virtualization solutions like VMware are typically used
when people need to create an abstraction layer between the physical hardware
and the software applications that run on it, at the cost of resources. The hypervi‐
sors that manage the VMs and each VM running kernel use a percentage of the
hardware system’s resources, which are then no longer available to the hosted
applications. A container, on the other hand, is just another process that talks
directly to the Linux kernel and therefore can utilize more resources, up until the
system or quota-based limits are reached.

When Docker was first released, Linux containers had been around for quite a few
years, and many of the other technologies that it is built on are not entirely new.
However, Docker’s unique mix of strong architectural and workflow choices combine
together into a whole that is much more powerful than the sum of its parts. Docker
finally makes Linux containers, which have been around for more than a decade,
approachable to the average technologist. It fits containers relatively easily into the
existing workflow and processes of real companies. And the problems discussed
above have been felt by so many people that interest in the Docker project has been
accelerating faster than anyone could have reasonably expected.

In the first year, newcomers to the project were surprised to find out that Docker
wasn’t already production-ready, but a steady stream of commits from the open
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source Docker community has moved the project forward at a very brisk pace. That
pace seems to only pick up steam as time goes on. As Docker has now moved well
into the 1.x release cycle, stability is good, production adoption is here, and many
companies are looking to Docker as a solution to some of the serious complexity
issues that they face in their application delivery processes.

What Docker Isn’t
Docker can be used to solve a wide breadth of challenges that other categories of tools
have traditionally been enlisted to fix; however, Docker’s breadth of features often
means that it lacks depth in specific functionality. For example, some organizations
will find that they can completely remove their configuration management tool when
they migrate to Docker, but the real power of Docker is that although it can replace
some aspects of more traditional tools, it is usually compatible with them or even
augmented by combining with them, as well. In the following list, we explore some of
the tool categories that Docker doesn’t directly replace but that can often be used in
conjunction to achieve great results:

Enterprise Virtualization Platform (VMware, KVM, etc.)
A container is not a virtual machine in the traditional sense. Virtual machines
contain a complete operating system, running on top of the host operating sys‐
tem. The biggest advantage is that it is easy to run many virtual machines with
radically different operating systems on a single host. With containers, both the
host and the containers share the same kernel. This means that containers utilize
fewer system resources, but must be based on the same underlying operating sys‐
tem (i.e., Linux).

Cloud Platform (Openstack, CloudStack, etc.)
Like Enterprise virtualization, the container workflow shares a lot of similarities
on the surface with cloud platforms. Both are traditionally leveraged to allow
applications to be horizontally scaled in response to changing demand. Docker,
however, is not a cloud platform. It only handles deploying, running, and manag‐
ing containers on pre-existing Docker hosts. It doesn’t allow you to create new
host systems (instances), object stores, block storage, and the many other resour‐
ces that are typically associated with a cloud platform.

Configuration Management (Puppet, Chef, etc.)
Although Docker can significantly improve an organization’s ability to manage
applications and their dependencies, it does not directly replace more traditional
configuration management. Dockerfiles are used to define how a container
should look at build time, but they do not manage the container’s ongoing state,
and cannot be used to manage the Docker host system.

What Docker Isn’t | 5



Deployment Framework (Capistrano, Fabric, etc.)
Docker eases many aspects of deployment by creating self-contained container
images that encapsulate all the dependencies of an application and can be
deployed, in all environments, without changes. However, Docker can’t be used
to automate a complex deployment process by itself. Other tools are usually still
needed to stitch together the larger workflow automation.

Workload Management Tool (Mesos, Fleet, etc.)
The Docker server does not have any internal concept of a cluster. Additional
orchestration tools (including Docker’s own Swarm tool) must be used to coordi‐
nate work intelligently across a pool of Docker hosts, and track the current state
of all the hosts and their resources, and keep an inventory of running containers.

Development Environment (Vagrant, etc.)
Vagrant is a virtual machine management tool for developers that is often used to
simulate server stacks that closely resemble the production environment in which
an application is destined to be deployed. Among other things, Vagrant makes it
easy to run Linux software on Mac OS X and Windows-based workstations. Since
the Docker server only runs on Linux, Docker provides boot2docker and Docker
Machine to allow developers to quickly launch Linux-based Docker machines on
various platforms. Boot2docker and Docker Machine are sufficient for many
standard Docker workflows, but they don’t provide the breadth of features found
in Vagrant.

Wrapping your head around Docker can be challenging when you are coming at it
without a strong frame of reference. In the next chapter we will lay down a broad
overview of Docker, what it is, how it is intended to be used, and what advantages it
brings to the table when implemented with all of this in mind.
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CHAPTER 2

Docker at a Glance

Before you dive into configuring and installing Docker, a quick survey is in order to
explain what Docker is and what it can bring to the table. It is a powerful technology,
but not a tremendously complicated one. In this chapter, we’ll cover the generalities
of how Docker works, what makes it powerful, and some of the reasons you might
use it. If you’re reading this, you probably have your own reasons to use Docker, but
it never hurts to augment your understanding before you dive in.

Don’t worry—this shouldn’t hold you up for too long. In the next chapter, we’ll dive
right into getting Docker installed and running on your system.

Process Simplification
Docker can simplify both workflows and communication, and that usually starts with
the deployment story. Traditionally, the cycle of getting an application to production
often looks something like the following (illustrated in Figure 2-1):

1. Application developers request resources from operations engineers.
2. Resources are provisioned and handed over to developers.
3. Developers script and tool their deployment.
4. Operations engineers and developers tweak the deployment repeatedly.
5. Additional application dependencies are discovered by developers.
6. Operations engineers work to install the additional requirements.
7. Loop over steps 5 and 6 N more times.
8. The application is deployed.
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Figure 2-1. A traditional deployment workflow (without Docker)

Our experience has shown that deploying a brand new application into production
can take the better part of a week for a complex new system. That’s not very produc‐
tive, and even though DevOps practices work to alleviate some of the barriers, it often
requires a lot of effort and communication between teams of people. This process can
often be both technically challenging and expensive, but even worse, it can limit the
kinds of innovation that development teams will undertake in the future. If deploying
software is hard, time-consuming, and requires resources from another team, then
developers will often build everything into the existing application in order to avoid
suffering the new deployment penalty.

Push-to-deploy systems like Heroku have shown developers what the world can look
like if you are in control of most of your dependencies as well as your application.
Talking with developers about deployment will often turn up discussions of how easy
that world is. If you’re an operations engineer, you’ve probably heard complaints
about how much slower your internal systems are compared with deploying on Her‐
oku.

Docker doesn’t try to be Heroku, but it provides a clean separation of responsibilities
and encapsulation of dependencies, which results in a similar boost in productivity. It
also allows even more fine-grained control than Heroku by putting developers in
control of everything, down to the OS distribution on which they ship their applica‐
tion.

As a company, Docker preaches an approach of “batteries included but removable.”
Which means that they want their tools to come with everything most people need to
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get the job done, while still being built from interchangeable parts that can easily be
swapped in and out to support custom solutions.

By using an image repository as the hand-off point, Docker allows the responsibility
of building the application image to be separated from the deployment and operation
of the container.

What this means in practice is that development teams can build their application
with all of its dependencies, run it in development and test environments, and then
just ship the exact same bundle of application and dependencies to production.
Because those bundles all look the same from the outside, operations engineers can
then build or install standard tooling to deploy and run the applications. The cycle
described in Figure 2-1 then looks somewhat like this (illustrated in Figure 2-2):

1. Developers build the Docker image and ship it to the registry.
2. Operations engineers provide configuration details to the container and provi‐

sion resources.
3. Developers trigger deployment.

Figure 2-2. A Docker deployment workflow

This is possible because Docker allows all of the dependency issues to be discovered
during the development and test cycles. By the time the application is ready for first
deployment, that work is done. And it usually doesn’t require as many handovers
between the development and operations teams. That’s a lot simpler and saves a lot of
time. Better yet, it leads to more robust software through testing of the deployment
environment before release.
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Broad Support and Adoption
Docker is increasingly well supported, with the majority of the large public clouds
announcing at least some direct support for it. For example, Docker runs on AWS
Elastic Beanstalk, Google AppEngine, IBM Cloud, Microsoft Azure, Rackspace
Cloud, and many more. At DockerCon 2014, Google’s Eric Brewer announced that
Google would be supporting Docker as its primary internal container format. Rather
than just being good PR for these companies, what this means for the Docker com‐
munity is that a lot of money is starting to back the stability and success of the
Docker platform.

Further building its influence, Docker’s containers are becoming the common format
among cloud providers, offering the potential for “write once, run anywhere” cloud
applications. When Docker released their libswarm development library at Docker‐
Con 2014, an engineer from Orchard demonstrated deploying a Docker container to
a heterogeneous mix of cloud providers at the same time. This kind of orchestration
has not been easy before, and it seems likely that as these major companies continue
to invest in the platform, the support and tooling will improve correspondingly.

So that covers Docker containers and tooling, but what about OS vendor support and
adoption? The Docker client runs directly on most major operating systems, but
because the Docker server uses Linux containers, it does not run on non-Linux sys‐
tems. Docker has traditionally been developed on the Ubuntu Linux distribution, but
most Linux distributions and other major operating systems are now supported
where possible.

Docker is barely two years old, but with such broad support across many platforms,
there is a lot of hope for its continued growth into the future.

Architecture
Docker is a powerful technology, and that often means something that comes with a
high level of complexity. But the fundamental architecture of Docker is a simple cli‐
ent/server model, with only one executable that acts as both components, depending
on how you invoke the docker command. Underneath this simple exterior, Docker
heavily leverages kernel mechanisms such as iptables, virtual bridging, cgroups,
namespaces, and various filesystem drivers. We’ll talk about some of these in Chap‐
ter 10. For now, we’ll go over how the client and server work and give a brief intro‐
duction to the network layer that sits underneath a Docker container.

Client/Server Model
Docker consists of at least two parts: the client and the server/daemon (see
Figure 2-3). Optionally there is a third component called the registry, which stores
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Docker images and metadata about those images. The server does the ongoing work
of running and managing your containers, and you use the client to tell the server
what to do. The Docker daemon can run on any number of servers in the infrastruc‐
ture, and a single client can address any number of servers. Clients drive all of the
communication, but Docker servers can talk directly to image registries when told to
do so by the client. Clients are responsible for directing servers what to do, and
servers focus on hosting containerized applications.

Figure 2-3. Docker client/server model

Docker is a little different in structure from some other client/server software. Instead
of having separate client and server executables, it uses the same binary for both com‐
ponents. When you install Docker, you get both components, but the server will only
launch on a supported Linux host. Launching the Docker server/daemon is as simple
as running docker with the -d command-line argument, which tells it to act like a
daemon and listen for incoming connections. Each Docker host will normally have
one Docker daemon running that can manage a number of containers. You can then
use the docker command-line tool client to talk to the server.

Network Ports and Unix Sockets
The docker command-line tool and docker -d daemon talk to each other over net‐
work sockets. You can choose to have the Docker daemon listen on one or more TCP
or Unix sockets. It’s possible, for example, to have Docker listen on both a local Unix
socket and two different TCP ports (encrypted and nonencrypted). On many Linux
distributions, that is actually the default. If you want to only be able to access Docker
from the local system, listening only on the Unix socket would be the most secure
option. However, most people want to talk to the docker daemon remotely, so it usu‐
ally listens on at least one TCP port.

The original TCP port that docker was configured to use was 4243, but that port was
never registered and in fact was already used by other tools such as the Mac OS X
backup client CrashPlan. As a result, Docker registered its own TCP port with IANA
and it’s now generally configured to use TCP port 2375 when running un-encrypted,
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or 2376 when handling encrypted traffic. In Docker 1.3 and later, the default is to use
the encrypted port on 2376, but this is easily configurable. The Unix socket is located
in different paths on different operating systems, so you should check where yours is
located. If you have strong preferences, you can usually specify this at install time. If
you don’t, then the defaults will probably work for you.

Robust Tooling
Among the many things that have led to Docker’s growing adoption is its simple and
powerful tooling. This has been expanding ever wider since its initial release by
Docker, and by the Docker community at large. The tooling that Docker ships with
supports both building Docker images and basic deployment to individual Docker
daemons, as well as all the functionality needed to actually manage a remote Docker
server. Community efforts have focused on managing whole fleets (or clusters) of
Docker servers and the scheduling and orchestrating of container deployments.
Docker has also launched its own orchestration toolset, including Compose (previ‐
ously known as Fig), Machine, and Swarm, which promises to eventually create a
cohesive deployment story across environments.

Because Docker provides both a command-line tool and a remote web API, it is easy
to add additional tooling in any language. The command-line tool lends itself well to
scripting, and a lot of power can easily be leveraged with simple shell script wrappers
around the command-line tool.

Docker Command-Line Tool
The command-line tool docker is the main interface that most people will have with
Docker. This is a Go program that compiles and runs on all common architectures
and operating systems. The command-line tool is available as part of the main
Docker distribution on various platforms and also compiles directly from the Go
source. Some of the things you can do with the Docker command-line tool include,
but are not limited to:

• Build a container image.
• Pull images from a registry to a Docker daemon or push them up to a registry

from the Docker daemon.
• Start a container on a Docker server either in the foreground or background.
• Retrieve the Docker logs from a remote server.
• Start a command-line shell inside a running container on a remote server.

You can probably see how these can be composed into a workflow for building and
deploying. But the Docker command-line tool is not the only way to interact with
Docker, and it’s not necessarily the most powerful.
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Application Programming Interface (API)
Like many other pieces of modern software, the Docker daemon has a remote API.
This is in fact what the Docker command-line tool uses to communicate with the
daemon. But because the API is documented and public, it’s quite common for exter‐
nal tooling to use the API directly. This enables all manners of tooling, from mapping
deployed Docker containers to servers, to automated deployments, to distributed
schedulers. While it’s very likely that beginners will not initially want to talk directly
to the Docker API, it’s a great tool to have available. As your organization embraces
Docker over time, it’s likely that you will increasingly find the API to be a good inte‐
gration point for this tooling.

Extensive documentation for the API is on the Docker site. As the ecosystem has
matured, robust implementations of Docker API libraries have begun to appear for
many popular languages. We’ve used the Go and Ruby libraries, for example, and
have found them to be both robust and rapidly updated as new versions of Docker
are released.

Most of the things you can do with the Docker command-line tooling is supported
relatively easily via the API. Two notable exceptions are the endpoints that require
streaming or terminal access: running remote shells or executing the container in
interactive mode. In these cases, it’s often easier to use the command-line tool.

Container Networking
Even though Docker containers are largely made up of processes running on the host
system itself, they behave quite differently from other processes at the network layer.
If you think of each of your Docker containers as behaving on the network like a host
on a private network, you’ll be on the right path. The Docker server acts as a virtual
bridge and the containers are clients behind it. A bridge is just a network device that
repeats traffic from one side to another. So you can think of it like a mini virtual net‐
work with hosts attached.

The implementation is that each container has its own virtual Ethernet interface con‐
nected to the Docker bridge and its own IP address allocated to the virtual interface.
Docker lets you bind ports on the host to the container so that the outside world can
reach your container. That traffic passes over a proxy that is also part of the Docker
daemon before getting to the container. See Chapter 10 for more detailed informa‐
tion.

Docker allocates the private subnet from an unused RFC 1918 private subnet block. It
detects which network blocks are unused on startup and allocates one to the virtual
network. That is bridged to the host’s local network through an interface on the
server called docker0. This means that all of the containers are on a network together
and can talk to each other directly. But to get to the host or the outside world, they go
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over the docker0 virtual bridge interface. As we mentioned, inbound traffic goes over
the proxy. This proxy is fairly high performance but can be limiting if you run high
throughput applications in containers. We talk more about this as well as other net‐
working topics in Chapter 10, and offer some solutions.

There is a dizzying array of ways in which you can configure Docker’s network layer,
from allocating your own network blocks to configuring your own custom bridge
interface. People often run with the default mechanisms, but there are times when
something more complex or specific to your application is required. You can find
much more detail about Docker networking in its documentation, and we will cover
more details about networking in the Advanced Topics chapter.

When developing your Docker workflow, you should definitely get
started with the default networking approach. You might later find
that you don’t want or need this default virtual network. You can
disable all of this with a single switch at docker daemon startup
time. It’s not configurable per container, but you can turn it off for
all containers using the --net host switch to docker -d. When
running in that mode, Docker containers just use the host’s own
network devices and address.

Getting the Most from Docker
Like most tools, Docker has a number of great use cases, and others that aren’t so
good. You can, for example, open a glass jar with a hammer. But that has its down‐
sides. Understanding how to best use the tool, or even simply determining if it’s the
right tool, can get you on the correct path much more quickly.

To begin with, Docker’s architecture aims it squarely at applications that are either
stateless or where the state is externalized into data stores like databases or caches. It
enforces some good development principles for this class of application and we’ll talk
later about how that’s powerful. But this means that doing things like putting a data‐
base engine inside Docker is basically like trying to swim against the current. It’s not
that you can’t do it, or even that you shouldn’t do it; it’s just that this is not the most
obvious use case for Docker and if it’s the one you start with, you may find yourself
disappointed early on. Some good applications for Docker include web frontends,
backend APIs, and short-running tasks, like maintenance scripts that might normally
be handled by cron.

14 | Chapter 2: Docker at a Glance

https://docs.docker.com/articles/networking/


Most traditional applications are stateful, which means that they
keep track of important data in memory, files, or a database. If you
restart a stateful service, you may lose any of the information that
isn’t written out of memory. Stateless applications, on the other
hand, are normally designed to immediately answer a single self-
contained request, and have no need to track information between
requests from one or more clients.

If you focus first on building an understanding of running stateless or externalized-
state applications inside containers, you will have a foundation on which to start con‐
sidering other use cases. We strongly recommend starting with stateless applications
and learning from that experience before tackling other use cases. It should be noted
that the community is working hard on how to better support stateful applications in
Docker, and there are likely to be many developments in this area over the next year
or more.

Containers Are Not Virtual Machines
A good way to start shaping your understanding of how to leverage Docker is to
think of containers not as virtual machines, but as very lightweight wrappers around
a single Unix process. During actual implementation, that process might spawn oth‐
ers, but on the other hand, one statically compiled binary could be all that’s inside
your container (see “Outside Dependencies” on page 111 for more information).
Containers are also ephemeral: they may come and go much more readily than a vir‐
tual machine.

Virtual machines are by design a stand-in for real hardware that you might throw in a
rack and leave there for a few years. Because a real server is what they’re abstracting,
virtual machines are often long-lived in nature. Even in the cloud where companies
often spin virtual machines up and down on demand, they usually have a running
lifespan of days or more. On the other hand, a particular container might exist for
months, or it may be created, run a task for a minute, and then be destroyed. All of
that is OK, but it’s a fundamentally different approach than virtual machines are typi‐
cally used for.

Containers Are Lightweight
We’ll get more into the details of how this works later, but creating a container takes
very little space. A quick test on Docker 1.4.1 reveals that a newly created container
from an existing image takes a whopping 12 kilobytes of disk space. That’s pretty
lightweight. One the other hand, a new virtual machine created from a golden image
might require hundreds or thousands of megabytes. The new container is so small
because it is just a reference to a layered filesystem image and some metadata about
the configuration.
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The lightness of containers means that you can use them for things where creating
another virtual machine would be too heavyweight, or in situations where you need
something to be truly ephemeral. You probably wouldn’t, for instance, spin up an
entire virtual machine to run a curl command to a website from a remote location,
but you might spin up a new container for this purpose.

Towards an Immutable Infrastructure
By deploying most of your applications within containers, it is possible to start sim‐
plifying your configuration management story by moving towards an immutable
infrastructure. The idea of an immutable infrastructure has recently gained popular‐
ity in response to how difficult it is, in reality, to maintain a truly idempotent configu‐
ration management code base. As your configuration management code base grows,
it can become as unwieldy and unmaintainable as large, monolithic legacy applica‐
tions. With Docker it is possible to deploy a very lightweight Docker server that needs
almost no configuration management, or in many cases, none at all. All of your appli‐
cation management is simply handled by deploying and redeploying containers to the
server. When the server needs an important update to something like the Docker
daemon or the Linux kernel, you can simply bring up a new server with the changes,
deploy your containers there, and then decommission or reinstall the old server.

Limited Isolation
Containers are isolated from each other, but it’s probably more limited than you
might expect. While you can put limits on their resources, the default container con‐
figuration just has them all sharing CPU and memory on the host system, much as
you would expect from colocated Unix processes. This means that unless you con‐
strain them, containers can compete for resources on your production machines.
That is sometimes what you want, but it impacts your design decisions. Limits on
CPU and memory use are possible through Docker but, in most cases, they are not
the default like they would be from a virtual machine.

It’s often the case that many containers share one or more common filesystem layers.
That’s one of the more powerful design decisions in Docker, but it also means that if
you update a shared image, you’ll need to re-create a number of containers.

Containerized processes are also just processes on the Docker server itself. They are
running on the same exact instance of the Linux kernel as the host operating system.
They even show up in the ps output on the Docker server. That is utterly different
from a hypervisor where the depth of process isolation usually includes running an
entirely separate instance of the operating system for each virtual machine.

This light default containment can lead to the tempting option of exposing more
resources from the host, such as shared filesystems to allow the storage of state. But
you should think hard before further exposing resources from the host into the con‐
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tainer unless they are used exclusively by the container. We’ll talk about security of
containers later, but generally you might consider helping to enforce isolation further
through the application of SELinux or AppArmor policies rather than compromising
the existing barriers.

By default, many containers use UID 0 to launch processes.
Because the container is contained, this seems safe, but in reality it
isn’t. Because everything is running on the same kernel, many types
of security vulnerabilities or simple misconfiguration can give the
container’s root user unauthorized access to the host’s system
resources, files, and processes.

Stateless Applications
A good example of the kind of application that containerizes well is a web application
that keeps its state in a database. You might also run something like ephemeral
memcache instances in containers. If you think about your web application, though,
it probably has local state that you rely on, like configuration files. That might not
seem like a lot of state, but it means that you’ve limited the reusability of your con‐
tainer, and made it more challenging to deploy into different environments, without
maintaining configuration data in your codebase.

In many cases, the process of containerizing your application means that you move
configuration state into environment variables that can be passed to your application
from the container. This allows you to easily do things like use the same container to
run in either production or staging environments. In most companies, those environ‐
ments would require many different configuration settings, from the names of data‐
bases to the hostnames of other service dependencies.

With containers, you might also find that you are always decreasing the size of your
containerized application as you optimize it down to the bare essentials required to
run. We have found that thinking of anything that you need to run in a distributed
way as a container can lead to some interesting design decisions. If, for example, you
have a service that collects some data, processes it, and returns the result, you might
configure containers on many servers to run the job and then aggregate the response
on another container.

Externalizing State
If Docker works best for stateless applications, how do you best store state when you
need to? Configuration is best passed by environment variables, for example. Docker
supports environment variables natively, and they are stored in the metadata that
makes up a container configuration. This means that restarting the container will
ensure that the same configuration is passed to your application each time.
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Databases are often where scaled applications store state, and nothing in Docker
interferes with doing that for containerized applications. Applications that need to
store files, however, face some challenges. Storing things to the container’s filesystem
will not perform well, will be extremely limited by space, and will not preserve state
across a container lifecycle. Applications that need to store filesystem state should be
considered carefully before putting them into Docker. If you decide that you can ben‐
efit from Docker in these cases, it’s best to design a solution where the state can be
stored in a centralized location that could be accessed regardless of which host a con‐
tainer runs on. In certain cases, this might mean a service like Amazon S3, RiakCS,
OpenStack Swift, a local block store, or even mounting iSCSI disks inside the con‐
tainer.

Although it is possible to externalize state on an attached filesys‐
tem, it is not generally encouraged by the community, and should
be considered an advanced use case. It is strongly recommended
that you start with applications that don’t need persistent state.
There are multiple reasons why this is generally discouraged, but in
almost all cases it is because it introduces dependencies between
the container and the host that interfere with using Docker as a
truly dynamic, horizontally scalable application delivery service. If
your container relies on an attached filesystem, it can only be
deployed to the system that contains this filesystem.

The Docker Workflow
Like many tools, Docker strongly encourages a particular workflow. It’s a very ena‐
bling workflow that maps well to how many companies are organized, but it’s proba‐
bly a little different than what you or your team are doing now. Having adapted our
own organization’s workflow to the Docker approach, we can confidently say that this
change is a benefit that touches many teams in the organization. If the workflow is
implemented well, it can really help realize the promise of reduced communication
overhead between teams.

Revision Control
The first thing that Docker gives you out of the box is two forms of revision control.
One is used to track the filesystem layers that images are made up of, and the other is
a tagging systems for built containers.

Filesystem layers
Docker containers are made up of stacked filesystem layers, each identified by a
unique hash, where each new set of changes made during the build process is laid on
top of the previous changes. That’s great because it means that when you do a new
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build, you only have to rebuild the layers that include and build upon the change
you’re deploying. This saves time and bandwidth because containers are shipped
around as layers and you don’t have to ship layers that a server already has stored. If
you’ve done deployments with many classic deployment tools, you know that you can
end up shipping hundreds of megabytes of the same data to a server over and over at
each deployment. That’s slow, and worse, you can’t really be sure exactly what
changed between deployments. Because of the layering effect, and because Docker
containers include all of the application dependencies, you can be quite sure where
the changes happened.

To simplify this a bit, remember that a Docker image contains everything required to
run your application. If you change one line of code, you certainly don’t want to waste
time rebuilding every dependency your code requires into a new image. Instead,
Docker will use as many base layers as it can so that only the layers affected by the
code change are rebuilt.

Image tags
The second kind of revision control offered by Docker is one that makes it easy to
answer an important question: what was the previous version of the application that
was deployed? That’s not always easy to answer. There are a lot of solutions for non-
Dockerized applications, from git tags for each release, to deployment logs, to tagged
builds for deployment, and many more. If you’re coordinating your deployment with
Capistrano, for example, it will handle this for you by keeping a set number of previ‐
ous releases on the server and then using symlinks to make one of them the current
release.

But what you find in any scaled production environment is that each application has
a unique way of handling deployment revisions. Or many do the same thing and one
is different. Worse, in heterogeneous language environments, the deployment tools
are often entirely different between applications and very little is shared. So the ques‐
tion of “What was the previous version?” can have many answers depending on
whom you ask and about which application. Docker has a built-in mechanism for
handling this: it provides image tagging at deployment time. You can leave multiple
revisions of your application on the server and just tag them at release. This is not
rocket science, and it’s not functionality that is hard to find in other deployment tool‐
ing, as we mention. But it can easily be made standard across all of your applications,
and everyone can have the same expectations about how things will be tagged for all
applications.
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In many examples on the Internet and in this book, you will see
people use the latest tag. This is useful when getting started and
when writing examples, as it will always grab the most recent ver‐
sion of a image. But since this is a floating tag, it is a bad idea to use
latest in most workflows, as your dependencies can get updated
out from under you, and it is impossible to roll back to latest
because the old version is no longer the one tagged latest.

Building
Building applications is a black art in many organizations, where a few people know
all the levers to pull and knobs to turn in order to spit out a well-formed, shippable
artifact. Part of the heavy cost of getting a new application deployed is getting the
build right. Docker doesn’t solve all the problems, but it does provide a standardized
tool configuration and tool set for builds. That makes it a lot easier for people to learn
to build your applications, and to get new builds up and running.

The Docker command-line tool contains a build flag that will consume a Dockerfile
and produce a Docker image. Each command in a Dockerfile generates a new layer in
the image, so it’s easy to reason about what the build is going to do by looking at the
Dockerfile itself. The great part of all of this standardization is that any engineer who
has worked with a Dockerfile can dive right in and modify the build of any other
application. Because the Docker image is a standardized artifact, all of the tooling
behind the build will be the same regardless of the language being used, the OS distri‐
bution it’s based on, or the number of layers needed.

Most Docker builds are a single invocation of the docker build command and gen‐
erate a single artifact, the container image. Because it’s usually the case that most of
the logic about the build is wholly contained in the Dockerfile, it’s easy to create stan‐
dard build jobs for any team to use in build systems like Jenkins. As a further stand‐
ardization of the build process, a few companies, including eBay, actually have
standardized Docker containers to do the image builds from a Dockerfile.

Testing
While Docker itself does not include a built-in framework for testing, the way con‐
tainers are built lends some advantages to testing with Docker containers.

Testing a production application can take many forms, from unit testing to full inte‐
gration testing in a semi-live environment. Docker facilitates better testing by guaran‐
teeing that the artifact that passed testing will be the one that ships to production.
This can be guaranteed because we can either use the Docker SHA for the container,
or a custom tag to make sure we’re consistently shipping the same version of the
application.
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The second part of the testing story is that all testing that is run against the container
will automatically include testing the application with all of the dependencies that it
will ship with. If a unit test framework says tests were successful against a container
image, you can be sure that you will not experience a problem with the versioning of
an underlying library at deployment time, for example. That’s not easy with most
other technologies, and even Java WAR files, for example, don’t include testing of the
application server itself. That same Java application deployed in a Docker container
will generally also include the application server, and the whole stack can be smoke
tested before shipping to production.

A secondary benefit of shipping applications in Docker containers is that in places
where there are multiple applications that talk to each other remotely via something
like an API, developers of one application can easily develop against a version of the
other service that is currently tagged for the environment they require, like produc‐
tion or staging. Developers on each team don’t have to be experts in how the other
service works or is deployed, just to do development on their own application. If you
expand this to a service-oriented architecture with innumerable microservices,
Docker containers can be a real lifeline to developers or QA engineers who need to
wade into the swamp of inter-microservice API calls.

Packaging
Docker produces what for all intents and purposes is a single artifact from each build.
No matter which language your application is written in, or which distribution of
Linux you run it on, you get a multilayered Docker image as the result of your build.
And it is all built and handled by the Docker tooling. That’s the shipping container
metaphor that Docker is named for: a single, transportable unit that universal tooling
can handle, regardless of what it contains. Like the container port, or multimodal
shipping hub, your Docker tooling will only ever have to deal with one kind of pack‐
age: the Docker image. That’s powerful because it’s a huge facilitator of tooling reuse
between applications, and it means that someone else’s off-the-shelf tools will work
with your build images. Applications that traditionally take a lot of custom configura‐
tion to deploy onto a new host or development system become incredibly portable
with Docker. Once a container is built, it can easily be deployed on any system with a
running Docker server.

Deploying
Deployments are handled by so many kinds of tools in different shops that it would
be impossible to list them here. Some of these tools include shell scripting, Capi‐
strano, Fabric, Ansible, or in-house custom tooling. In our experience with multi-
team organizations, there are usually one or two people on each team who know the
magic incantation to get deployments to work. When something goes wrong, the
team is dependent on them to get it running again. As you probably expect by now,
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Docker makes most of that a nonissue. The built-in tooling supports a simple, one-
line deployment strategy to get a build onto a host and up and running. The standard
Docker client only handles deploying to a single host at a time, but there are other
tools available that make it easy to deploy into a cluster of Docker hosts. Because of
the standardization provided by Docker, your build can be deployed into any of these
systems, with low complexity on the part of the development teams.

The Docker Ecosystem
There is a wide community forming around Docker, driven by both developers and
system administrators. Like the DevOps movement, this has facilitated better tools by
applying code to operations problems. Where there are gaps in the tooling provided
by Docker, other companies and individuals have stepped up to the plate. Many of
these tools are also open source. That means they are expandable and can be modi‐
fied by any other company to fit their needs.

Orchestration
The first important category of tools that adds functionality to the core Docker distri‐
bution contains orchestration and mass deployment tools like Docker’s Swarm, New
Relic’s Centurion and Spotify’s Helios. All of these take a generally simple approach to
orchestration. For more complex environments, Google’s Kubernetes and Apache
Mesos are more powerful options. There are new tools shipping constantly as new
adopters discover gaps and publish improvements.

Atomic hosts
One additional idea that can be leveraged to enhance your Docker experience is
atomic hosts. Traditionally, servers and virtual machines are systems that an organi‐
zation will carefully assemble, configure, and maintain to provide a wide variety of
functionality that supports a broad range of usage patterns. Updates must often be
applied via nonatomic operations, and there are many ways in which host configura‐
tions can diverge and introduce unexpected behavior into the system. Most running
systems are patched and updated in place in today’s world. Conversely, in the world
of software deployments, most people deploy an entire copy of their application,
rather than trying to apply patches to a running system. One of the appeals of con‐
tainers is that they help make applications even more atomic than traditional deploy‐
ment models.

What if you could extend that core container pattern all the way down into the oper‐
ating system? Instead of relying on configuration management to try to update,
patch, and coalesce changes to your OS components, what if you could simply pull
down a new, thin OS image and reboot the server? And then if something breaks,
easily roll back to the exact image you were previously using?
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This is one of the core ideas behind Linux-based atomic host distributions, like Cor‐
eOS and Project Atomic. Not only should you be able to easily tear down and rede‐
ploy your applications, but the same philosophy should apply for the whole software
stack. This pattern helps provide incredible levels of consistency and resilience to the
whole stack.

Some of the typical characteristics of an atomic host are a minimal footprint, a
focused design towards supporting Linux containers and Docker, and providing
atomic OS updates and rollbacks that can easily be controlled via multihost orches‐
tration tools on both bare-metal and common virtualization platforms.

In Chapter 3, we will discuss how you can easily use atomic hosts in your develop‐
ment process. If you are also using atomic hosts as deployment targets, this process
creates a previously unheard of amount of software stack symmetry between your
development and production environments.

Additional tools
Additional categories include auditing, logging, network, mapping, and many other
tools, the majority of which leverage the Docker API directly. Some of these tools and
Docker-related features include CoreOS’s flannel for Kubernetes; Weave, a virtual
network for spanning containers across multiple Docker hosts; and direct support for
Docker logs in Mozilla’s Heka log router.

The results of the broad community that is rapidly evolving around Docker is any‐
one’s guess, but it is likely that this support will only accelerate Docker’s adoption and
the development of robust tools that solve many of the problems that the community
struggles with.

Wrap-Up
There you have it, a quick tour through Docker. We’ll return to this discussion later
on with a slightly deeper dive into the architecture of Docker, more examples of how
to use the community tooling, and a deeper dive into some of the thinking behind
designing robust container platforms. But you’re probably itching to try it all out, so
in the next chapter we’ll get Docker installed and running.
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CHAPTER 3

Installing Docker

The steps required to install Docker vary depending on the primary platform you use
for development and the Linux distribution that you use to host your applications in
production. Since Docker is a technology built around Linux containers, people
developing on non-Linux platforms will need to use some form of virtual machine or
remote server for many parts of the process.

In this chapter, we discuss the steps required to get a fully working Docker develop‐
ment environment set up on most modern desktop operating systems. First we’ll
install the Docker client on your native development platform, then we’ll get a
Docker server running on Linux. Finally we’ll test out the installation to make sure it
works as expected.

Although the Docker client can run on Windows and Mac OS X to control a Docker
Server, Docker containers can only be built and launched on Linux. Therefore, non-
Linux systems will require a virtual machine or remote server to host the Linux-based
Docker server.

Important Terminology
Below are a few terms that we will continue to use throughout the book and whose
meanings you should become familiar with.

Docker client
The docker command used to control most of the Docker workflow and talk to
remote Docker servers.
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Docker server
The docker command run in daemon mode. This turns a Linux system into a
Docker server that can have containers deployed, launched, and torn down via a
remote client.

Docker images
Docker images consist of one or more filesystem layers and some important met‐
adata that represent all the files required to run a Dockerized application. A sin‐
gle Docker image can be copied to numerous hosts. A container will typically
have both a name and a tag. The tag is generally used to identify a particular
release of an image.

Docker container
A Docker container is a Linux container that has been instantiated from a Docker
image. A specific container can only exist once; however, you can easily create
multiple containers from the same image.

Atomic host
An atomic host is a small, finely tuned operating system image, like CoreOS and
Project Atomic, that supports container hosting and atomic OS upgrades.

Docker Client
The Docker client natively supports 64-bit versions of Linux and Mac OS X due to
the Unix underpinnings of both operating systems. There have been reports of people
getting Docker to run on 32-bit systems, but it is not currently supported.

The majority of popular Linux distributions can trace their origins to either Debian
or Red Hat. Debian systems utilize the deb package format and Advanced Package
Tool (apt) to install most prepackaged software. On the other hand, Red Hat systems
rely on rpm (Red Hat Package Manager) files and Yellowdog Updater, Modified
(yum) to install similar software packages.

On Mac OS X and Microsoft Windows, native GUI installers provide the easiest
method to install and maintain prepackaged software. On Mac OS X, Homebrew is
also a very popular option among technical users.

To develop with Docker on non-Linux platforms, you will need to
leverage virtual machines or remote Linux hosts to provide a
Docker server. Boot2Docker and , which are discussed later in this
chapter, provide one approach to solving this issue.
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Linux
It is strongly recommended that you run Docker on a modern release of your pre‐
fered Linux distribution. It is possible to run Docker on some older releases, but sta‐
bility may be an significant issue. Generally a 3.8 or later kernel is required, and we
advise you to use the newest stable version of your chosen distribution. The direc‐
tions below assume you are using a recent, stable release.

Ubuntu Linux 14.04 (64-bit)
To install Docker on a current installation, run the following commands:

$ sudo apt-get update
$ sudo apt-get install docker.io
$ sudo ln -sf /usr/bin/docker.io /usr/local/bin/docker

and then, if you are a bash user, you can set up completion for your convenience:

$ sudo sed -i '$acomplete -F _docker docker' /etc/bash_completion.d/docker.io
$ source /etc/bash_completion.d/docker.io

Fedora Linux 21 (64-bit)
To install the correct Docker packages on your system, run the following command:

$ sudo yum -y install docker-io

If you get a Cannot start container error, try running sudo yum
upgrade selinux-policy and then reboot your system.

Older Fedora releases have a pre-existing package called docker,
which is a KDE and GNOME2 system tray replacement docking
application for WidowMaker. In newer versions of Fedora, this
package has been renamed to wmdocker.

Mac OS X 10.10
To install Boot2Docker on Mac OS X, you can use any one of the following methods,
depending on your preferences and needs:

• GUI Installer
• Homebrew

New users may want to stick with the GUI installer for simplicity.
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GUI installer
Download the latest Boot2Docker installer and then double-click on the downloaded
program icon. Follow all of the installer prompts until the installation is finished.

The installer will also install VirtualBox, which Mac OS X requires to launch Linux
virtual machines that can build Docker images and run containers.

Homebrew installation
To install using the popular Homebrew package management system for Mac OS X,
you must first install Homebrew. The Homebrew project suggests installing the soft‐
ware with the following command:

$ ruby -e \
"$(curl -fsSL \
https://raw.githubusercontent.com/Homebrew/install/master/install)"

Running random scripts from the Internet on your system is not
considered wise. It is unlikely that this script has been altered in a
malicous manner, but a wise soul would read through the script
first, or consider an alternative installation option.

If you already have Homebrew installed on your system, you should update it and all
the installed formulas by running:

$ brew update

To install VirtualBox via Homebrew, you need to add support for an additional
Homebrew repository that contains many GUI and large binary applications for Mac
OS X. This can be done with one simple command:

$ brew install caskroom/cask/brew-cask

You can find more information about Homebrew Casks at cask‐
room.io.

Now that you have Homebrew and Cask installed and the newest software formulas
have been downloaded, you can install VirtualBox with the following command:

$ brew cask install virtualbox

And then installing Docker is as simple as running:

$ brew install docker
$ brew install boot2docker
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Microsoft Windows 8
Download the latest Boot2Docker installer and then double-click on the downloaded
program icon. Follow all of the installer prompts until the installation is finished.

The installer will also install VirtualBox, which Microsoft Windows requires to
launch Linux virtual machines that can build Docker images and run containers.

Installation directions for additional operating systems can be
found at docs.docker.com.

Docker Server
The Docker server is integrated into the same binary that you use as the client. It’s not
obvious that it’s the same when you install it because all of the Linux init systems
shield you from the command that is actually invoked to run the daemon. So it’s use‐
ful to see that running the Docker daemon manually on a Linux system is a simple as
typing something like this:

$ sudo docker -d -H unix:///var/run/docker.sock -H tcp://0.0.0.0:2375

This command tells Docker to start in daemon mode (-d), create and listen to a Unix
domain socket (-H unix:///var/run/docker.sock), and bind to all system IP
addresses using the default unencrypted traffic port for docker (-H tcp://

0.0.0.0:2375).

If you already have Docker running, manually executing the dae‐
mon again, will fail because it can’t use the same ports twice.

Of course, you’re not likely to have to do this yourself. But that’s what going on
behind the scene. On non-Linux systems, you will need to set up a Linux-based vir‐
tual machine to host the Docker server.

Systemd-Based Linux
Current Fedora releases utilize systemd to manage processes on the system. Because
you have already installed Docker, you can ensure that the server starts every time
you boot the system by typing:

$ sudo systemctl enable docker
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This tells systemd to enable the docker service and start it when the system boots or
switches into the default runlevel.

To start the docker server, type the following:

$ sudo systemctl start docker

Upstart-Based Linux
Ubuntu uses the upstart init daemon, although future versions are very likely going
to be converting to systemd. Upstart replaces the traditional Unix init system with an
event-driven model and supports vastly simplified init scripts, sometimes only a few
lines long.

To enable the docker server to start when the system boots, type:

$ sudo update-rc.d docker.io defaults

To start the service immediately, you can use:

$ service docker.io start

init.d-Based Linux
Many Linux distributions used on production servers are still using a more tradi‐
tional init.d system. If you are running something based on the Red Hat 6 ecosys‐
tem, among others, then you can likely use commands similar to the following to
control when the docker server runs.

Enable the Docker service at boot with:

$ chkconfig docker on

Start the Docker service immediately:

$ service docker start

or:

$ /etc/init.d/docker start

Non-Linux VM-Based Server
If you are using Microsoft Windows or Mac OS X in your Docker workflow, the
default installation provides VirtualBox and Boot2Docker, so that you can set up a
Docker server for testing. These tools allow you to boot an Ubuntu-based Linux vir‐
tual machine on your local system. We’ll focus on Boot2Docker because it’s more uni‐
versal than other tools and is entirely targeted at getting you up and running quickly.

In addition to Boot2Docker, it is also possible to use other tools to set up the Docker
server, depending on your preferences and needs.
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• Docker Machine
• Vagrant
• Manually maintained virtual machines
• Kitematic

New users may want to stick with Boot2Docker for the simplest experience. If even
that seems too complicated, there is Kitematic, a GUI-based installer specific to Mac
OS X. This was recently acquired by Docker, Inc., and brought in-house.

Boot2Docker
To initialize Boot2Docker and download the required boot image, run the following
command the first time you use Boot2Docker. You should see output similar to what
is displayed below.

$ boot2docker init
Latest release for boot2docker/boot2docker is v1.3.1
Downloading boot2docker ISO image...
Success: downloaded https://github.com/.../boot2docker.iso
  to /Users/me/.boot2docker/boot2docker.iso
Generating public/private rsa key pair.
Your identification has been saved in /Users/me/.ssh/id_boot2docker.
Your public key has been saved in /Users/me/.ssh/id_boot2docker.pub.
The key fingerprint is:
ce:dc:61:42:fe:e1:7b:af:2d:d6:00:57:bc:ff:66:5d me@my-mbair.local
The key's randomart image is:
+--[ RSA 2048]----+
|                 |
|                E|
|          .    o.|
|         . B    .|
|        o ++oo.o+|
|         S+=+=..o|
|         .=.+..+o|
|             .o  |
|            o.   |
+-----------------+

Now you can start up a virtual machine with a running Docker daemon. By default,
Boot2Docker will map port 2376 on your local host to the secure Docker port 2376
on the virtual machine to make it easier to interact with the Docker server from your
local system.

$ boot2docker up
Waiting for VM and Docker daemon to start...
...........ooo
Started.
Writing /Users/me/.boot2docker/certs/boot2docker-vm/ca.pem
Writing /Users/me/.boot2docker/certs/boot2docker-vm/cert.pem
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Writing /Users/me/.boot2docker/certs/boot2docker-vm/key.pem

To connect the Docker client to the Docker daemon, please set:
    export DOCKER_TLS_VERIFY=1
    export DOCKER_HOST=tcp://172.17.42.10:2376
    export DOCKER_CERT_PATH=/Users/skane/.boot2docker/certs/boot2docker-vm

To set up your shell environment so that you can easily use your local Docker client
to talk to the Docker daemon on your virtual machine, you can run:

$ $(boot2docker shellinit)

If everything is running properly, you should now be able to run the following to
connect to the Docker daemon:

$ docker info
Containers: 0
Images: 0
Storage Driver: aufs
 Root Dir: /mnt/sda1/var/lib/docker/aufs
 Dirs: 0
Execution Driver: native-0.2
Kernel Version: 3.16.4-tinycore64
Operating System: Boot2Docker 1.3.1 (TCL 5.4); ...
Debug mode (server): true
Debug mode (client): false
Fds: 10
Goroutines: 11
EventsListeners: 0
Init Path: /usr/local/bin/docker

To connect to a shell on your Boot2Docker-based virtual machine, you can use the
following command:

$ boot2docker ssh
Warning: Permanently added '[localhost]:2022' (RSA) to the list of known hosts.
                        ##        .
                  ## ## ##       ==
               ## ## ## ##      ===
           /""""""""""""""""\___/ ===
      ~~~ {~~ ~~~~ ~~~ ~~~~ ~~ ~ /  ===- ~~~
           \______ o          __/
             \    \        __/
              \____\______/
 _                 _   ____     _            _
| |__   ___   ___ | |_|___ \ __| | ___   ___| | _____ _ __
| '_ \ / _ \ / _ \| __| __) / _` |/ _ \ / __| |/ / _ \ '__|
| |_) | (_) | (_) | |_ / __/ (_| | (_) | (__|   <  __/ |
|_.__/ \___/ \___/ \__|_____\__,_|\___/ \___|_|\_\___|_|
Boot2Docker version 1.3.1, build master : 9a31a68 - Fri Oct 31 03:14:34 UTC 2014
Docker version 1.3.1, build 4e9bbfa
docker@boot2docker:~$
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Docker Machine
In early 2015, Docker announced the beta release of Docker Machine, a tool that
makes it much easier to set up Docker hosts on bare-metal, cloud, and virtual
machine platforms.

The easiest way to install Docker Machine is to visit the GitHub releases page and
download the correct binary for your operating system and architecture. Currently,
there are versions for 32- and 64-bit versions of Linux, Windows, and Mac OS X.

For these demonstrations, you will also need to have a recent release of a hypervisor,
like VirtualBox, installed on your system.

For this section, you will use a Unix-based system with VirtualBox for the examples.

First you need to download and install the docker-machine executable:

$ curl -L -o docker-machine \
https://github.com/docker/machine/releases/download\
/v0.1.0/docker-machine_darwin-amd64
$ mkdir ~/bin
$ cp docker-machine ~/bin
$ export PATH=${PATH}:~/bin
$ chmod u+rx ~/bin/docker-machine

We’ve had to line wrap the URL to fit the format of this book. If
you have trouble running that in your shell as-is, try removing the
backslashes and joining it into one line without any spaces in the
URL.

Once you have the docker-machine executable in your path, you can start to use it to
set up Docker hosts. Here we’ve just put it temporarily into your path. If you want to
keep running it in the future, you’ll want to add it to your .profile or .bash_pro
file file. Now that we can run the tool, the next thing that you need to do is create a
named Docker machine. You can do this using the docker-machine create com‐
mand:

$ docker-machine create --driver virtualbox local
INFO[0000] Creating CA: /Users/skane/.docker/machine/certs/ca.pem
INFO[0001] Creating client certificate: /.../.docker/machine/certs/cert.pem
INFO[0000] Downloading boot2docker.iso to /.../machine/cache/boot2docker.iso...
INFO[0001] Creating SSH key...
INFO[0001] Creating VirtualBox VM...
INFO[0013] Starting VirtualBox VM...
INFO[0014] Waiting for VM to start...
INFO[0061] "local" has been created and is now the active machine.
INFO[0061] To point your Docker client at it, run this in your shell:
  $(docker-machine env local)
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This downloads a Boot2Docker image and then creates a VirtualBox virtual machine
that you can use as a Docker host. If you look at the output from the create com‐
mand, you will see that it instructs you to run the following command:

$ $(docker-machine env local)

This command has no output, so what does it do exactly? If you run it without the
surrounding $(), you will see that it sets a couple of environment variables in our
current shell that tell the Docker client where to find the Docker server:

$ docker-machine env local
export DOCKER_TLS_VERIFY=yes
export DOCKER_CERT_PATH=/Users/me/.docker/machine/machines/local
export DOCKER_HOST=tcp://172.17.42.10:2376

And now if you want to confirm what machines you have running, you can use the
following command:

$ docker-machine ls
NAME    ACTIVE   DRIVER       STATE     URL                         SWARM
local   *        virtualbox   Running   tcp://172.17.42.10:2376

This tells you that you have one machine, named local, that is active and running.

Now you can pass commands to the new Docker machine by leveraging the regular
docker command, since you have set the proper environment variables. If you did
not want to set these environment variables, you could also use the docker and
docker-machine commands in conjunction with one another, like so:

$ docker $(docker-machine config local) ps
CONTAINER ID  IMAGE  COMMAND  CREATED  STATUS  PORTS  NAMES

This command embeds the output from docker-machine into the middle of the
docker command. If you run the docker-machine on its own, you can see what it is
adding to the docker command:

$ docker-machine config local
  --tls --tlscacert=/Users/me/.docker/machine/machines/local/ca.pem \
  --tlscert=/Users/me/.docker/machine/machines/local/cert.pem \
  --tlskey=/Users/me/.docker/machine/machines/local/key.pem \
  -H="tcp://172.17.42.10:2376"

Although you can see the Docker host’s IP address in the output, you can ask for it
explicitly with the following command:

$ docker-machine ip
172.17.42.10

If you want to log in to the system, you can easily do this by running:

$ docker-machine ssh local
                        ##        .
                  ## ## ##       ==
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               ## ## ## ##      ===
           /""""""""""""""""\___/ ===
      ~~~ {~~ ~~~~ ~~~ ~~~~ ~~ ~ /  ===- ~~~
           \______ o          __/
             \    \        __/
              \____\______/
 _                 _   ____     _            _
| |__   ___   ___ | |_|___ \ __| | ___   ___| | _____ _ __
| '_ \ / _ \ / _ \| __| __) / _` |/ _ \ / __| |/ / _ \ '__|
| |_) | (_) | (_) | |_ / __/ (_| | (_) | (__|   <  __/ |
|_.__/ \___/ \___/ \__|_____\__,_|\___/ \___|_|\_\___|_|
Boot2Docker version 1.5.0, build master : a66bce5 - Tue Feb 10 ... UTC 2015
Docker version 1.5.0, build a8a31ef
docker@local:~$ exit

To stop your Docker machine, you can run:

$ docker-machine stop local

And then you can run this to restart it (you need it to be running):

$ docker-machine start local
INFO[0000] Waiting for VM to start...

Some of the documentation states that if you run docker-machine
stop without specifying a machine name, the command will exe‐
cute on the active machine as identified in the output of docker-
machine ls. This does not seem to actually be the case in the
current release.

If you want to explore the other options that docker-machine provides, you can sim‐
ply run docker-machine without any other options to see the command help.

Vagrant
If you need more flexibility with the way your Docker development environment is
set up you might want to consider using Vagrant instead of Boot2Docker. Vagrant
provides some advantages, including support for multiple hypervisors, a huge array
of virtual machine images, and much more.

A common use case for leveraging Vagrant during Docker development is to support
testing on images that match your production enviroment. Vagrant supports every‐
thing from broad distributions like CentOS 7 and Ubuntu 14.04, to finely focused
atomic host distributions like CoreOS and Project Atomic.

Vagrant can be easily installed on most platforms by downloading a self-contained
package from vagrantup.com. You will also need to have a hypervisor, like Virtual‐
Box, installed on your system.
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In the following example, you will create a CoreOS-based Docker host running the
Docker daemon on the unencrypted port 2375. You could use your favorite distribu‐
tion here instead. But CoreOS ships with working Docker out of the box and the
image is quite small.

In production, Docker should always be set up to only use encryp‐
ted remote connections. Althought Boot2Docker now uses encryp‐
ted communications by default, setting up Vagrant to do this in
CoreOS is currently a bit too complicated for this installation
example.

After Vagrant is installed, create a host directory with a name similar to docker-host
and then move into that directory:

$ mkdir docker-host
$ cd docker-host

To install the coreos-vagrant files, you need the version control tool named git. If you
don’t already have git, you can download and install it from git-scm.com. When git is
installed, you can grab the coreos-vagrant files and then change into the new directory
with the following commands:

$ git clone https://github.com/coreos/coreos-vagrant.git
$ cd coreos-vagrant

Inside the coreos-vagrant directory, we need to create a new file called config.rb (that
tells it to expose the Docker TCP port so we can connect):

echo "\$expose_docker_tcp=2375" > config.rb

Next you’ll need to leverage the built-in cloud-init tool to add some systemd unit
files that will enable the Docker daemon on TCP port 2375. You can do this by creat‐
ing a file called user-data that contains all of the following, including #cloud-config
at the beginning:

#cloud-config

coreos:
  units:
    - name: docker-tcp.socket
      command: start
      enable: yes
      content: |
        [Unit]
        Description=Docker Socket for the API

        [Socket]
        ListenStream=2375
        BindIPv6Only=both
        Service=docker.service
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        [Install]
        WantedBy=sockets.target
    - name: enable-docker-tcp.service
      command: start
      content: |
        [Unit]
        Description=Enable the Docker Socket for the API

        [Service]
        Type=oneshot
        ExecStart=/usr/bin/systemctl enable docker-tcp.socket

When you have saved both of these files, you can start up the Vagrant-based virtual
machine by running:

$ vagrant up
Bringing machine 'core-01' up with 'virtualbox' provider...
==> core-01: Box 'coreos-alpha' could not be found. Attempting to find and install...
    core-01: Box Provider: virtualbox
    core-01: Box Version: >= 308.0.1
==> core-01: Loading metadata ... 'http://.../coreos_production_vagrant.json'
    core-01: URL: http://.../coreos_production_vagrant.json
==> core-01: Adding box 'coreos-alpha' (v472.0.0) for provider: virtualbox
    core-01: Downloading: http://.../coreos_production_vagrant.box
    core-01: Calculating and comparing box checksum...
==> core-01: Successfully added box 'coreos-alpha' (v472.0.0) for 'virtualbox'!
==> core-01: Importing base box 'coreos-alpha'...
==> core-01: Matching MAC address for NAT networking...
==> core-01: Checking if box 'coreos-alpha' is up to date...
==> core-01: Setting the name of the VM: coreos-vagrant_core-01
==> core-01: Clearing any previously set network interfaces...
==> core-01: Preparing network interfaces based on configuration...
    core-01: Adapter 1: nat
    core-01: Adapter 2: hostonly
==> core-01: Forwarding ports...
    core-01: 2375 => 2375 (adapter 1)
    core-01: 22 => 2222 (adapter 1)
==> core-01: Running 'pre-boot' VM customizations...
==> core-01: Booting VM...
==> core-01: Waiting for machine to boot. This may take a few minutes...
    core-01: SSH address: 127.0.0.1:2222
    core-01: SSH username: core
    core-01: SSH auth method: private key
    core-01: Warning: Connection timeout. Retrying...
==> core-01: Machine booted and ready!
==> core-01: Setting hostname...
==> core-01: Configuring network adapters within the VM...
==> core-01: Running provisioner: file...
==> core-01: Running provisioner: shell...
    core-01: Running: inline script
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To set up your shell environment so that you can easily use your local Docker client
to talk to the Docker daemon on your virtual machine, you can set the following vari‐
ables:

$ unset DOCKER_TLS_VERIFY
$ unset DOCKER_CERT_PATH
$ export DOCKER_HOST=tcp://127.0.0.1:2375

If everything is running properly, you should now be able to run the following to
connect to the Docker daemon:

$ docker info
Containers: 0
Images: 0
Storage Driver: btrfs
Execution Driver: native-0.2
Kernel Version: 3.16.2+
Operating System: CoreOS 472.0.0

To connect to a shell on the Vagrant-based virtual machine, you can run:

$ vagrant ssh
CoreOS (alpha)
core@core-01 ~ $

Test the Setup
You are now ready to test that everything is working. You should be able to run any
one of the following commands on your local system to tell the Docker daemon to
download the latest official container for that distribution and then launch it running
an instance of bash.

This step is important to ensure that all the peices are properly installed and commu‐
nicating with each other as expected. It also shows off one of the features of Docker:
we can run containers based on any distribution we like. In the next few steps we’ll
run Docker containers based on Ubuntu, Fedora, and CentOS. You don’t need to run
them all to prove that this works; running one of them will suffice.

If you want to run these commands on the server, be sure that you
prepend each docker command with sudo. Alternatively you could
add your user to the docker group directly.

Ubuntu
$ docker run --rm -ti ubuntu:latest /bin/bash
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Fedora
$ docker run --rm -ti fedora:latest /bin/bash

CentOS
$ docker run --rm -ti centos:latest /bin/bash

ubuntu:latest, fedora:latest, and centos:latest all represent a
Docker image name followed by an image tag.

Wrap-Up
Now that you have a running Docker setup, you can start to look at more than the
basic mechanics of getting it installed. In the next chapter, you’ll explore some of the
basic functionality of Docker with some hands-on work.

In the rest of the book, when you see docker on the command line, assume you will
need to have the correct configuration in place either as environment variables or via
the -H command-line flag to tell the docker client how to connect to your docker
daemon.
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CHAPTER 4

Working with Docker Images

Every Docker container is based on an image, which provides the basis for everything
that you will ever deploy and run with Docker. To launch a container, you must either
download a public image or create your own. Every Docker image consists of one or
more filesystem layers that generally have a direct one-to-one mapping to each indi‐
vidual build step used to create that image.

For image management, Docker relies heavily on its storage backend, which commu‐
nicates with the underlying Linux filesystem to build and manage the multiple layers
that combine into a single usable image. The primary storage backends that are sup‐
ported include: AUFS, BTRFS, Device-mapper, and overlayfs. Each storage backend
provides a fast copy-on-write (CoW) system for image management.

Anatomy of a Dockerfile
To create a custom Docker image with the default tools, you will need to become
familiar with the Dockerfile. This file describes all the steps that are required to create
one image and would usually be contained within the root directory of the source
code repository for your application.

A typical Dockerfile might look something like the one shown here, which will create
a container for a Node.js-based application:

FROM node:0.10

MAINTAINER Anna Doe <anna@example.com>

LABEL "rating"="Five Stars" "class"="First Class"

USER root

ENV AP /data/app
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ENV SCPATH /etc/supervisor/conf.d

RUN apt-get -y update

# The daemons
RUN apt-get -y install supervisor
RUN mkdir -p /var/log/supervisor

# Supervisor Configuration
ADD ./supervisord/conf.d/* $SCPATH/

# Application Code
ADD *.js* $AP/

WORKDIR $AP

RUN npm install

CMD ["supervisord", "-n"]

Dissecting this Dockerfile will provide some initial exposure to a number of the pos‐
sible instructions that you can use to control how an image is assembled. Each line in
a Dockerfile creates a new image layer that is stored by Docker. This means that when
you build new images, Docker will only need to build layers that deviate from previ‐
ous builds.

Although you could build a Node instance from a plain, base Linux image, you can
also explore the Docker Registry for official images for Node. Node.js maintains a
series of Docker images and tags that allows you to quickly determine that you should
tell the image to inherit from node:0.10, which will pull the most recent Node.js ver‐
sion 0.10 container. If you want to lock the image to a specific version of Node, you
could instead point it at node:0.10.33. The base image that follows will provide you
with an Ubuntu Linux image running Node 0.10.x:

FROM node:0.10

The MAINTAINER field provides contact information for the Dockerfile’s author, which
populates the Author field in all resulting images’ metadata:

MAINTAINER Anna Doe <anna@example.com>

The ability to apply labels to images and containers was added to Docker in version
1.6. This means that you can now add metadata via key-value pairs that can later be
used to search for and identify Docker images and containers. You can see the labels
applied to any image using the docker inspect command:

LABEL "rating"="Five Stars" "class"="First Class"

By default, Docker runs all processes as root within the container, but you can use the
USER instruction to change this:
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1 Don’t Repeat Yourself.

USER root

Even though containers provide some isolation from the underly‐
ing operating system, they still run on the host kernel. Due to
potential security risks, production containers should almost
always be run under the context of a non-privileged user.

The ENV instruction allows you to set shell variables that can be used during the build
process to simplify the Dockerfile and help keep it DRYer:1

ENV AP /data/app
ENV SCPATH /etc/supervisor/conf.d

In the following code, you’ll use a collection of RUN instructions to start and create the
required file structure that you need, and install some required software dependen‐
cies. You’ll also start to use the build the variables you defined in the previous section
to save you a bit of work and help protect you from typos:

RUN apt-get -y update

# The daemons
RUN apt-get -y install supervisor
RUN mkdir -p /var/log/supervisor

It is generally considered a bad idea to run commands like apt-get
-y update or yum -y update in your application Dockerfiles
because it can significantly increase the time it takes for all of your
builds to finish. Instead, consider basing your application image on
another image that already has these updates applied to it.

Remember that every instruction creates a new Docker image layer,
so it often makes sense to combine a few logically grouped com‐
mands onto a single line. It is even possible to use the ADD instruc‐
tion in combination with the RUN instruction to copy a complex
script to your image and then execute that script with only two
commands in the Dockerfile.

The ADD instruction is used to copy files from the local filesystem into your image.
Most often this will include your application code and any required support files:

# Supervisor Configuration
ADD ./supervisord/conf.d/* $SCPATH/
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2 This code was forked from GitHub.

# Application Code
ADD *.js* $AP/

ADD allows you to include files from the local filesystem into the
image. However, once the image is built, you can use the image
without having access to the original files because they have been
copied into the image.

With the WORKDIR instruction, you change the working directory in the image for the
remaining build instructions:

WORKDIR $AP

RUN npm install

The order of commands in a Dockerfile can have a very significant
impact on ongoing build times. You should try to order commands
so that things that change between every single build are closer to
the bottom. This means that adding your code and similar steps
should be held off until the end. When you rebuild an image, every
single layer after the first introduced change will need to be rebuilt.

And finally you end with the CMD instruction, which defines the command that
launches the process that you want to run within the container:

CMD ["supervisord", "-n"]

It is generally considered best practice to only run a single process
within a container, although there is debate about this within the
community. The idea is that a container should provide a single
function, so that it remains easy to horizontally scale individual
functions within your architecture. In the example, you are using
supervisord to manage the node application and ensure that it
stays running within the container.

Building an Image
To build your first image, let’s go ahead and clone a git repo that contains an example
application called docker-node-hello, as shown here:2

$ git clone https://github.com/spkane/docker-node-hello.git
Cloning into 'docker-node-hello'...

44 | Chapter 4: Working with Docker Images

https://github.com/enokd/docker-node-hello


remote: Counting objects: 20, done.
remote: Compressing objects: 100% (14/14), done.
remote: Total 20 (delta 6), reused 20 (delta 6)
Unpacking objects: 100% (20/20), done.
Checking connectivity... done.
$ cd docker-node-hello

Git is frequently installed on Linux and Mac OS X systems, but if
you do not already have git available, you can download a simple
installer from git-scm.com.

This will download a working Dockerfile and related source code files into a directory
called docker-node-hello. If you look at the contents while ignoring the git repo direc‐
tory, you should see the following:

$ tree -a -I .git
.
├── .dockerignore
├── .gitignore
├── Dockerfile
├── Makefile
├── README.md
├── Vagrantfile
├── index.js
├── package.json
└── supervisord
    └── conf.d
        ├── node.conf
        └── supervisord.conf

Let’s review the most relevant files in the repo.

The Dockerfile should be exactly the same as the one you just reviewed.

The .dockerignore file allows you to define files and directories that you do not want
uploaded to the Docker host when you are building the image. In this instance,
the .dockerignore file contains the following line:

.git

This instructs docker build to exclude the .git directory, which contains the whole
source code repository. You do not need this directory to build the Docker image,
and since it can grow quite large over time, you don’t want to waste time copying it
every time you do a build.
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The .git directory contains git configuration data and every single
change that you have ever made to your code. The rest of the files
reflect the current state of your source code. This is why we can
safely tell Docker to ignore the .git directory.

• package.js defines the Node.js application and lists any dependencies that it relies
on.

• index.js is the main source code for the application.

The supervisord directory contains the configuration files for supervisord that you
will need to start and monitor the application.

Using supervisord in this example to monitor the application is
overkill, but it is intended to provide a bit of insight into some of
the techniques you can use in a container to provide more control
over your application and its running state.

As we discussed in Chapter 3, you will need to have your Docker server running and
your client properly set up to communicate with it before you can build a Docker
image. Assuming that this is all working, you should be able to initiate a new build by
running the command below, which will build and tag an image based on the files in
the current directory.

The first build that you run will take a few minutes because you
have to download the base node image. Subsequent builds should
be much faster unless a newer node 0.10 base image has been
released.

Each step identified in the following output maps directly to a line in the Dockerfile,
and each step creates a new image layer based on the previous step:

$ docker build -t example/docker-node-hello:latest .
Sending build context to Docker daemon 16.38 kB
Sending build context to Docker daemon
Step 0 : FROM node:0.10
node:0.10: The image you are pulling has been verified
511136ea3c5a: Pull complete
36fd425d7d8a: Pull complete
aaabd2b41e22: Pull complete
3c20e07c38ce: Pull complete
b6ef456c239c: Pull complete
b045b0cd49ad: Pull complete
210d9bc26f2f: Pull complete
27ecce8bd36c: Pull complete
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fcac83abd52d: Pull complete
edc7d098628f: Pull complete
b5ac041b53f9: Pull complete
387247331d9c: Pull complete
Status: Downloaded newer image for node:0.10
 ---> 387247331d9c
Step 1 : MAINTAINER Anna Doe <anna@example.com>
 ---> Running in fd83efd2ecbd
 ---> a479befa0788
Removing intermediate container fd83efd2ecbd
Step 2 : LABEL "rating"="Five Stars" "class"="First Class"
 ---> Running in 30acbe0f1379
 ---> 3cbea27e857c
Removing intermediate container 30acbe0f1379
Step 3 : USER root
 ---> Running in 32dfbc0f0855
 ---> 9fada51b938d
Removing intermediate container 32dfbc0f0855
Step 4 : ENV AP /data/app
 ---> Running in 0e04f129d7f5
 ---> 818dafcc487a
Removing intermediate container 0e04f129d7f5
Step 5 : ENV SCPATH /etc/supervisor/conf.d
 ---> Running in f828cccc5038
 ---> b5f3a2dbc1a2
Removing intermediate container f828cccc5038
Step 6 : RUN apt-get -y update
 ---> Running in 51e0d361adfe
Get:1 http://security.debian.org jessie/updates InRelease [84.1 kB]
Get:2 http://http.debian.net jessie InRelease [191 kB]
Get:3 http://security.debian.org jessie/updates/main amd64 Packages [20 B]
Get:4 http://http.debian.net jessie-updates InRelease [117 kB]
Get:5 http://http.debian.net jessie/main amd64 Packages [9103 kB]
Get:6 http://http.debian.net jessie-updates/main amd64 Packages [20 B]
Fetched 9496 kB in 7s (1232 kB/s)
Reading package lists...
W: Size of file /var/lib/... is not what the server reported 9102955 9117278
 ---> 16c8639b44c9
Removing intermediate container 51e0d361adfe
Step 7 : RUN apt-get -y install supervisor
 ---> Running in fa79bc727362
Reading package lists...
Building dependency tree...
Reading state information...
The following extra packages will be installed:
  python-meld3
The following NEW packages will be installed:
  python-meld3 supervisor
0 upgraded, 2 newly installed, 0 to remove and 96 not upgraded.
Need to get 304 kB of archives.
After this operation, 1483 kB of additional disk space will be used.
Get:1 http://.../debian/ jessie/main python-meld3 amd64 1.0.0-1 [37.0 kB]
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Get:2 http://.../debian/ jessie/main supervisor all 3.0r1-1 [267 kB]
debconf: delaying package configuration, since apt-utils is not installed
Fetched 304 kB in 1s (232 kB/s)
Selecting previously unselected package python-meld3.
(Reading database ... 29248 files and directories currently installed.)
Preparing to unpack .../python-meld3_1.0.0-1_amd64.deb ...
Unpacking python-meld3 (1.0.0-1) ...
Selecting previously unselected package supervisor.
Preparing to unpack .../supervisor_3.0r1-1_all.deb ...
Unpacking supervisor (3.0r1-1) ...
Setting up python-meld3 (1.0.0-1) ...
Setting up supervisor (3.0r1-1) ...
invoke-rc.d: policy-rc.d denied execution of start.
 ---> eabf485da230
Removing intermediate container fa79bc727362
Step 8 : RUN mkdir -p /var/log/supervisor
 ---> Running in 0bf6264625dd
 ---> 4bcba91d84e1
Removing intermediate container 0bf6264625dd
Step 9 : ADD ./supervisord/conf.d/* $SCPATH/
 ---> df0d938b53a3
Removing intermediate container dcfa16d0fec2
Step 10 : ADD *.js* $AP/
 ---> b21779fe3194
Removing intermediate container 00d2f6d10444
Step 11 : WORKDIR $AP
 ---> Running in f412220027b5
 ---> 0f84bc7ac153
Removing intermediate container f412220027b5
Step 12 : RUN npm install
 ---> Running in 7340a9041404
npm WARN engine formidable@1.0.13: wanted:
    {"node":"<0.9.0"} (current: {"node":"0.10.33","npm":"2.1.8"})
express@3.2.4 node_modules/express
├── methods@0.0.1
├── fresh@0.1.0
├── range-parser@0.0.4
├── cookie-signature@1.0.1
├── buffer-crc32@0.2.1
├── cookie@0.0.5
├── commander@0.6.1
├── mkdirp@0.3.4
├── debug@2.1.0 (ms@0.6.2)
├── send@0.1.0 (mime@1.2.6)
└── connect@2.7.9 (pause@0.0.1, qs@0.6.4, bytes@0.2.0, formidable@1.0.13)
 ---> 84f3a4bc2336
Removing intermediate container 7340a9041404
Step 13 : CMD supervisord -n
 ---> Running in 23671c2f57b7
 ---> 96eab440b7c8
Removing intermediate container 23671c2f57b7
Successfully built 96eab440b7c8
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To improve the speed of builds, Docker will use a local cache when
it thinks it is safe. This can sometimes lead to unexpected issues. In
the output above you will notice lines like ---> Running in

23671c2f57b7. If instead you see ---> Using cache, you know
that Docker decided to use the cache. You can disable the cache for
a build by using the --no-cache argument to the docker build
command.

Running Your Image
Once you have successfully built the image, you can run it on your Docker host with
the following command:

$ docker run -d -p 8080:8080 example/docker-node-hello:latest

The above command tells Docker to create a running container in the background
from the image with the example/docker-node-hello:latest tag, and then map
port 8080 in the container to port 8080 on the Docker host.

If everything goes as expected, the new Node.js application should be running in a
container on the host. You can verify this by running docker ps.

To see the running application in action, you will need to open up a web browser and
point it at port 8080 on the Docker host.

You can usually determine the Docker host IP address by simply printing out the
value of the DOCKER_HOST environment variable unless you are only running Docker
locally, in which case 127.0.0.1 should work. Boot2Docker or Docker Machine users
can also simply use boot2docker ip or docker-machine ip, respectively:

$ echo $DOCKER_HOST
tcp://172.17.42.10:2376

Get the IP address and enter something like http://172.17.42.10:8080/ into your web
browser address bar.

You should see the following text:

Hello World. Wish you were here.

Environment Variables
If you read the index.js file, you will notice that part of the file refers to the variable
$WHO, which the application uses to determine who it is going to say Hello to:

var DEFAULT_WHO = "World";
var WHO = process.env.WHO || DEFAULT_WHO;

app.get('/', function (req, res) {
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  res.send('Hello ' + WHO + '. Wish you were here.\n');
});

Let’s quickly learn how you can configure this application by passing in environment
variables when you start it.

First you need to stop the existing container using two commands. The first com‐
mand will provide you with the container ID, which you will need to use in the sec‐
ond command:

$ docker ps
CONTAINER ID  IMAGE                             STATUS       ...
b7145e06083f  example/centos-node-hello:latest  Up 4 minutes ...

And then, using the container ID from the previous output, you can stop the running
container by typing:

$ docker stop b7145e06083f
b7145e06083f

You can then restart the container by adding one argument to the previous docker
run command:

$ docker run -d -p 8080:8080 -e WHO="Sean and Karl" \
example/docker-node-hello:latest

If you reload your web browser, you should see that the text on the web page now
reads:

Hello Sean and Karl. Wish you were here.

Custom Base Images
Base images are the lowest-level images that other Docker images will build upon.
Most often, these are based on minimal installs of Linux distributions like Ubuntu,
Fedora, or CentOS, but they can also be much smaller, containing a single statically
compiled binary. For most people, using the official base images for their favorite dis‐
tribution or tool is a great option.

However, there are times when it is more preferable to build your own base images
that are not based on an image created by someone else. One reason to do this would
be to maintain a consistent OS image across all your deployment methods for hard‐
ware, VMs, and containers. Another would be to get the image size down substan‐
tially. There is no need to ship around an entire Ubuntu distribution, for example, if
your application is a statically built C or Go application. You might find that you only
need the tools you regularly use for debugging and some other shell commands and
binaries. Making the effort to build such an image could pay off in better deployment
times and easier application distribution.
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In the official Docker documentation, there is some good information about how you
can build base images on the various Linux distributions.

Storing Images
Now that you have created a Docker image that you’re happy with, you’ll want to
store it somewhere so that it can be easily accessed by any Docker host that you want
to deploy it to. This is also the clear hand-off point between building images and
putting them somewhere to run. You don’t normally build the images on the server
and then run them. Ordinarily, deployment is the process of pulling an image from a
repository and running it on one or more Docker servers. There are a few ways you
can go about storing your images into a central repository for easy retrieval.

Public Registries
Docker provides an image registry for public images that the community wants to
share. These include official images for Linux distibutions, ready-to-go WordPress
containers, and much more.

If you have images that can be published to the Internet, the best place for them is a
public registry, like Docker Hub. However, there are other options. When the core
Docker tools were first gaining popularity, Docker Hub did not exist. To fill this obvi‐
ous void in the community, Quay.io was created. Since then, Quay.io has been pur‐
chased by CoreOS and has been used to create the CoreOS Enterprise Registry
product, which we will discuss in a moment.

Both Docker Hub and Quay.io provide centralized Docker image registries that can
be accessed from anywhere on the Internet, and provide a method to store private
images in addition to public ones. Both have nice user interfaces and the ability to
separate team access permissions and manage users. Both also offer reasonable com‐
mercial options for private SaaS hosting of your images, much in the same way that
GitHub sells private registries on their systems. This is probably the right first step if
you’re getting serious about Docker but are not yet shipping enough code to need an
internally hosted solution.

For companies that use Docker heavily, the biggest downside to these registries is that
they are not local to the network on which the application is being deployed. This
means that every layer of every deployment might need to be dragged across the
Internet in order to deploy an application. Internet latencies have a very real impact
on software deployments, and outages that affect these registries could have a very
detrimental impact on a company’s ability to deploy smoothly and on schedule. This
is mitigated by good image design where you make thin layers that are easy to move
around the Internet.
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Private Registries
The other option that many companies consider is to host some type of Docker
image registry internally. Before the public registry existed for Docker, the Docker
developers released the docker-registry project on GitHub. The docker-registry is a
GUI-less Python daemon that can interact with the Docker client to support pushing,
pulling, and searching images. Originally it did not support any form of authentica‐
tion, but this has been fixed, and in addition to local file storage, the open source
docker-registry now supports S3, Azure, and a few other storage backends.

Another strong contender in the private registry space is the CoreOS Enterprise Reg‐
istry. When CoreOS bought Quay.io, it quickly took the codebase and made it avalia‐
ble as an easily deployable Docker container. This product basically offers all the
same features at Quay.io, but can be deployed internally. It ships as a virtual machine
that you run as an appliance, and supports the same UI and interfaces as the public
Quay.io.

In December of 2014, Docker announced that it was working to develop Docker Hub
Enterprise (DHE), which will allow organizations to have a Docker-supported on-
premise image registry in their data center or cloud environment.

Authenticating to a Registry
Communicating with a registry that stores container images is part of daily life with
Docker. For many registries, this means you’ll need to authenticate to gain access to
images. But Docker also tries to make it easy to automate things so it can store your
login information and use it on your behalf when you request things like pulling
down a private image. By default, Docker assumes the registry will be Docker Hub,
the public repository hosted by Docker, Inc.

Creating a Docker Hub account
For these examples, we will create an account on Docker Hub. You don’t need an
account to use publicly shared images, but you will need one to upload your own
public or private containers.

To create your account, use your web browser of choice to navigate to Docker Hub.

From there, you can either log in via an existing GitHub account or create a new
login based on your email address. When you first log in to your new account, you
will land on the Docker welcome page, which is where you can configure details
about your account.

When you create your account, Docker Hub sends a verification email to the address
that you provided during signup. You should immediately log in to your email
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account and click the verification link inside the email to finish the validation pro‐
cess.

At this point, you have created a public registry to which you can upload new images.
The “Global settings” option in your account sidebar will allow you to change your
registry into a private one if that is what you need.

Logging in to a registry
Now let’s log in to the Docker Hub registry using our account:

$ docker login
Username: someuser
Password: <not shown>
Email: someone@example.com
Login Succeeded

When we get “Login Succeeded” back from the server, we know we’re ready to pull
images from the registry. But what happened under the covers? It turns out that
Docker has written a dotfile for us in our home directory to cache this information.
The permissions are set to 0600 as a security precaution against other users reading
your credentials. You can inspect the file with something like:

$ ls -la ~/.dockercfg
-rw------- 1 someuser someuser 95 Mar  6 15:07 /home/someuser/.dockercfg
$ cat ~/.dockercfg
{"https://index.docker.io/v1/":{"auth":"cmVsaEXamPL3hElRmFCOUE=",
"email":"someone@example.com"}}

Here we can see the .dockercfg file, owned by someuser, and the stored credentials in
JSON format. Note that this can support multiple registries at once. In this case, we
just have one entry, for Docker Hub, but we could have more if we need it. From now
on, when the registry needs authentication, Docker will look in .dockercfg to see if we
have credentials stored for this hostname. If so, it will supply them. You will notice
that one value is completely lacking here: a timestamp. These credentials are cached
forever or when we tell Docker to remove them, whichever comes first.

Just like logging in, we can also log out of a registry if we no longer want to cache the
credentials:

$ docker logout
Remove login credentials for https://index.docker.io/v1/
$ ls -la ~/.dockercfg
ls: cannot access /home/someuser/.dockercfg: No such file or directory

Here we removed our cached credentials and they are no longer stored. But some‐
thing else happened: the file is gone. That’s because it was the only set of credentials
that were cached, so Docker has simply removed the file.
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If we were trying to log in to something other than the Docker Hub registry, we could
supply the hostname on the command line:

$ docker login someregistry.example.com

This would then end up as just another line in our .dockercfg file.

Mirroring a Registry
It is possible to set up a local registry in your network that will mirror images from
the upstream public registry so that you don’t need to pull commonly used images all
the way across the Internet every time you need them on a new host. This can even be
useful on your development workstation so that you can keep a local stash of fre‐
quently used images that you might need to access offline.

Configuring the Docker daemon
To do this, the first thing that you need to do is relaunch your Docker daemon with
the --registry-mirror command-line argument, replacing ${YOUR_REGISTRY-

MIRROR-HOST} with your Docker server’s IP address and port number (e.g.,
172.17.42.10:5000).

If you plan to run the docker-registry container on your only
Docker server, you can set ${YOUR_REGISTRY-MIRROR-HOST} to
localhost:5000.

If you already have Docker running, you need to stop it first. This is distribution-
specific. You should use the commands you normally use on your distribution, like
initctl, service, or systemctl, to stop the daemon. Then we can invoke it man‐
ually with this registry mirroring option:

$ docker -d --registry-mirror=http://${YOUR_REGISTRY-MIRROR-HOST}

If you would like to ensure that your Docker daemon always starts with this setup,
you will need to edit the appropriate configuration file for your Linux distibution.

Boot2Docker.    Create /var/lib/boot2docker/profile if it doesn’t already exist:

$ sudo touch /var/lib/boot2docker/profile

Then edit /var/lib/boot2docker/profile and append the argument to your EXTRA_ARGS:

EXTRA_ARGS="--registry-mirror=http://${YOUR_REGISTRY-MIRROR-HOST}"

And then restart the docker daemon:

sudo /etc/init.d/docker restart
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Ubuntu.    Edit /etc/default/docker and append the argument to your DOCKER_OPTS:

DOCKER_OPTS="--registry-mirror=http://${YOUR_REGISTRY-MIRROR-HOST}"

And then restart the docker daemon:

sudo service docker.io restart

Fedora.    Edit /etc/sysconfig/docker and append the argument to your OPTIONS:

OPTIONS="--registry-mirror=http://${YOUR_REGISTRY-MIRROR-HOST}"

And then restart the docker daemon:

sudo systemctl daemon-reload
sudo systemctl restart docker

CoreOS.    First copy the systemd unit file for Docker to a writeable filesystem:

$ sudo cp /usr/lib/systemd/system/docker.service /etc/systemd/system/

Then, as root, edit /etc/systemd/system/docker.service and append the argument to the
end of the ExecStart line:

ExecStart=/usr/lib/coreos/dockerd --daemon --host=fd:// \
$DOCKER_OPTS $DOCKER_OPT_BIP $DOCKER_OPT_MTU $DOCKER_OPT_IPMASQ \
--registry-mirror=http://${YOUR_REGISTRY-MIRROR-HOST}

And then restart the docker daemon:

sudo systemctl daemon-reload
sudo systemctl restart docker

Launching the local registry mirror service
You will now need to launch a container on your Docker host that will run the regis‐
try mirror service and provide you with a local cache of Docker images. You can
accomplish this by running the registry image as a container with a few important
environment variables defined and a storage volume mounted.

While this book was being written, the docker-registry was the offi‐
cial reference implementation. Along with the release of Docker
1.6, Docker officially announced the release of Docker Registry 2.0,
which does not support mirroring. The current plans are to add
mirroring to the new registry with the release of Docker 1.7 and
Registry 2.1.
If you are considering setting up your own registry, you should
investigate the Docker Distribution Github page and the official
documentation for Docker Registry 2.0.
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On your Docker server, ensure that you have a directory for storing the images:

$ mkdir -p /var/lib/registry

Then you can launch the container, with the following options defined:

$ docker run -d -p 5000:5000 \
    -v /var/lib/registry:/tmp/registry \
    -e SETTINGS_FLAVOR=dev \
    -e STANDALONE=false \
    -e MIRROR_SOURCE=https://registry-1.docker.io \
    -e MIRROR_SOURCE_INDEX=https://index.docker.io \
    registry

The registry supports a lot of different storage backends, including
S3, Swift, Glance, Azure Blob Storage, Google Cloud Storage, and
more.

Testing the local registry mirror service
Now that the registry is running as a mirror, we can test it. On a Unix-based system,
you can time how long it takes to download the newest CentOS image, using the fol‐
lowing command:

$ time docker pull centos:latest
Pulling repository centos
88f9454e60dd: Download complete
511136ea3c5a: Download complete
5b12ef8fd570: Download complete
Status: Downloaded newer image for centos:latest

real 1m25.406s
user 0m0.019s
sys 0m0.014s

In this case, it took 1 minute and 25 seconds to pull the whole image. If we then go
ahead and delete the image from the Docker host and then re-time fetching the image
again, we will see a significant difference:

$ docker rmi centos:latest
Untagged: centos:latest
$ time docker pull centos:latest
Pulling repository centos
88f9454e60dd: Download complete
511136ea3c5a: Download complete
5b12ef8fd570: Download complete
Status: Image is up to date for centos:latest

real 0m2.042s
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user 0m0.004s
sys 0m0.005s

Both times that you pulled the centos:latest image, the Docker server connected to
the local registry mirror service and asked for the image. In the first case, the mirror
service did not have the image so it had to pull it from the official docker-registry
first, add it to its own storage, and then deliver it to the Docker server. After you
delete the image from the Docker server and then request it again, you’ll see that the
time to pull the image will drop to be very low. In the previous code, it took only two
seconds for the Docker server to receive the image. This is because the local registry
mirror service had a copy of the image and could provide it directly to the server
without pulling anything from the upstream public docker-registry.

Other Approaches to Image Delivery
Over the last two years, the community has explored many other approaches to man‐
aging Docker images and providing simple but reliable access to images when
needed. Some of these projects, like dogestry, leverage the docker save and docker
load commands to create and load images from cloud storage like Amazon S3. Other
people are exploring the possibilities of using torrents to distribute Docker images,
with projects like torrent-docker. Torrents seem like a natural fit because deployment
is usually done to a group of servers on the same network all at the same time. Solo‐
mon Hykes recently committed that the Docker Distribution project will soon ship a
command-line tool for importing and exporting image layers even without a Docker
daemon. This will facilitate even more diverse methods of image distribution. As
more and more companies and projects begin to use Docker seriously, even more
robust solutions are likely to begin to appear to meet the needs of anyone’s unique
workflow and requirements.

If you have a scenario in which you can’t use the off-the-shelf mechanisms, such as an
isolated network for security concerns, you can leverage Docker’s built-in importing
and exporting features to dump and load new images. Unless you have a specific rea‐
son to do otherwise, you should use one of the off-the-shelf solutions and only con‐
sidering changing your approach when needed. The available options will work for
almost everyone.
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CHAPTER 5

Working with Docker Containers

In the previous chapter, we learned how to build a Docker image and the very basic
steps required for running the resulting image within a container. In this chapter,
we’ll first take a look at where containers came from and then dive deeper into con‐
tainers and the Docker commands that control the overall configuration, resources,
and privileges that your container receives.

What Are Containers?
You might be familiar with virtualization systems like VMware or Xen that allow you
to run a complete Linux kernel and operating system on top of a virtualized layer,
commonly called a hypervisor. This approach provides very strong isolation between
virtual machines because each hosted kernel sits in separate memory space and has
defined entry points into the actual hardware, either through another kernel or some‐
thing that looks like hardware.

Containers are a fundamentally different approach where all containers share a single
kernel and isolation is implemented entirely within that single kernel. This is called 
operating system virtualization. The libcontainer project gives a good, short defini‐
tion of a container: “A container is a self-contained execution environment that
shares the kernel of the host system and which is (optionally) isolated from other
containers in the system.” The major advantages are around efficiency of resources
because you don’t need a whole operating system for each isolated function. Since you
are sharing a kernel, there is one less layer of indirection between the isolated task
and the real hardware underneath. When a process is running inside a container,
there is only a very little shim that sits inside the kernel rather than potentially calling
up into a whole second kernel while bouncing in and out of privileged mode on the
processor.
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1 SELinux is one current implementation.

But the container approach means that you can only run processes that are compati‐
ble with the underlying kernel. Unlike hardware virtualization like that provided by
VMware, for example, Windows applications cannot run inside a Linux container. So
containers are best thought of as a Linux technology where, at least for now, you can
run any of your favorite Linux applications or servers. When thinking of containers,
you should try very hard to throw out what you might already know about virtual
machines and instead conceptualize a container as a wrapper around a process that
actually runs on the server.

History of Containers
It is often the case that a revolutionary technology is an older technology that has
finally arrived in the spotlight. Technology goes in waves, and some of the ideas from
the 1960s are back in vogue. Similarly, Docker is a new technology and it has an ease
of use that has made it an instant hit, but it doesn’t exist in a vacuum. Much of what
underpins Docker comes from work done over the last 30 years in a few different are‐
nas: from a system call added to the Unix kernel in the late 1970s, to tooling built on
modern Linux. It’s worth a quick tour through how we got to Docker because under‐
standing that helps you place it within the context of other things you might be famil‐
iar with.

Containers are not a new idea. They are a way to isolate and encapsulate a part of the
running system. The oldest technology in that area were the first batch processing
systems. You’d run a program for a while, then switch to run another program. There
was isolation: you could make sure your program didn’t step on anyone else’s pro‐
gram. That’s all pretty crude now, but it’s the very first step on the road to Linux con‐
tainers and Docker.

Most people would argue that the seeds for today’s containers were planted in 1979
with the addition of the chroot system call to Version 7 Unix. chroot restricts a proc‐
ess’s view of the underlying filesystem. The chroot system call is commonly used to
protect the operating system from untrusted server processes like FTP, BIND, and
Sendmail, which are publicly exposed and susceptible to compromise.

In the 1980s and 1990s, various Unix variants were created with mandatory access
controls for security reasons.1 This meant you had tightly controlled domains run‐
ning on the same Unix kernel. Processes in each domain had an extremely limited
view of the system that precluded them from interacting across domains. A popular
commercial version of Unix that implemented this idea was the Sidewinder firewall
built on top of BSDI Unix. But this was not possible in most mainstream Unix imple‐
mentations.
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That changed in 2000 when FreeBSD 4.0 was released with a new command, called
jail, which was designed to allow shared-environment hosting providers to easily
and securely create a separation between their processes and those of their individual
customers. FreeBSD jail expanded chroot’s capabilities, but restricted everything a
process could do with the underlying system and processes in other jails.

In 2004, Sun released an early build of Solaris 10, which included Solaris Containers,
and later evolved into Solaris Zones. This was the first major commercial implemen‐
tation of container technology and is still used today to support many commercial
container implementations. In 2007, HP released Secure Resource Partitions for HP-
UX, later renamed to HP-UX Containers; and finally, in 2008, Linux Containers
(LXC) were released in version 2.6.24 of the Linux kernel. The phenomenal growth of
Linux Containers across the community did not really start to grow until 2013 with
the inclusion of user namespaces in version 3.8 of the Linux Kernel and the release of
Docker one month later.

Companies that had to deal with scaling applications to the size of the Internet, with
Google being a very early example, started pushing container technology in the early
2000s in order to facilitate distributing their applications across data centers full of
computers. A few companies maintained their own patched kernels with container
support for internal use. Google contributed some of its work to support containers
into the mainline Linux kernel, as understanding about the broader need for these
features began to increase in the Linux community.

In late 2013, months after the Docker announcement, Google released lmctfy, the
open source version of the internal container engine it had been running for some
years. By this time, Docker was already widely discussed in the press. It was the right
combination of ease of use and enabling technology just at the right time. Other
promising container engines, like CoreOS Rocket, have been released since, but
Docker seems to have built up a head of steam that is currently powering it to the
forefront.

If you haven’t heard about CoreOS Rocket, you might be wonder‐
ing what it is. Rocket is an open source container runtime that
CoreOS is designing to address what they see as serious deficien‐
cies with the Docker approach to containerization and the support‐
ing tool set. It is left as an exercise for the reader to determine
whether the CoreOS approach and solution fits your needs.

Now let’s turn back to Docker and take a closer look at modern containers.
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Creating a Container
So far we’ve started containers using the handy docker run command. But docker
run is really a convenience command that wraps two separate steps into one. The first
thing it does is create a container from the underlying image. This is accomplished
separately using the docker create command. The second thing docker run does is
execute the container, which we can also do separately with the docker start com‐
mand.

The docker create and docker run commands both contain all the options that
pertain to how a container is initially set up. In Chapter 4, we demonstrated that with
the docker run command you could map network ports in the underlying container
to the host using the -p argument, and that -e could be used to pass environment
variables into the container.

This only just begins to touch on the array of things that you can configure when you
first create a container. So let’s take a pass over some of the options that docker sup‐
ports.

Basic Configuration
Now let’s take a look at some of the ways we can tell Docker to configure our con‐
tainer when we create it.

Container name
When you create a container, it is built from the underlying image, but various
command-line arguments can affect the final settings. Settings specified in the Dock‐
erfile are always used as defaults, but you can override many of them at creation time.

By default, Docker randomly names your container by combining an adjective with
the name of a famous person. This results in names like ecstatic-babbage and serene-
albattani. If you want to give your container a specific name, you can do so using the
--name argument.

$ docker create --name="awesome-service" ubuntu:latest

You can only have one container with any given name on a Docker
host. If you run the above command twice in a row, you will get an
error. You must either delete the previous container using docker
rm or change the name of the new container.
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2 Typically under /var/lib/docker/containers.

Labels
As mentioned in Chapter 4, labels are key-value pairs that can be applied to Docker
images and containers as metadata. When new Docker containers are created, they
automatically inherit all the labels from their parent image.

It is also possible to add new labels to the containers so that you can apply metadata
that might be specific to that single container.

docker run -d --name labels -l deployer=Ahmed -l tester=Asako \
  ubuntu:latest sleep 1000

You can then search for and filter containers based on this metadata, using com‐
mands like docker ps.

$ docker ps -a -f label=deployer=Ahmed
CONTAINER ID  IMAGE         COMMAND       ... NAMES
845731631ba4  ubuntu:latest "sleep 1000"  ... labels

You can use the docker inspect command on the container to see all the labels that
a container has.

$ docker inspect 845731631ba4
...
        "Labels": {
            "deployer": "Ahmed",
            "tester": "Asako"
        },
...

Hostname
By default, when you start a container, Docker will copy certain system files on the
host, including /etc/hostname, into the container’s configuration directory on the
host,2 and then use a bind mount to link that copy of the file into the container. We
can launch a default container with no special configuration like this:

$ docker run --rm -ti ubuntu:latest /bin/bash

This command uses the docker run command, which runs docker create and
docker start in the background. Since we want to be able to interact with the con‐
tainer that we are going to create for demonstration purposes, we pass in a few useful
arguments. The --rm argument tells Docker to delete the container when it exits, the
-t argument tells Docker to allocate a psuedo-TTY, and the -i argument tells Docker
that this is going to be an interactive session, and we want to keep STDIN open. The
final argument in the command is the exectuable that we want to run within the con‐
tainer, which in this case is the ever useful /bin/bash.
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If we now run the mount command from within the resulting container, we will see
something similar to this:

root@ebc8cf2d8523:/# mount
overlay on / type overlay (rw,relatime,lowerdir=...,upperdir=...,workdir...)
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
tmpfs on /dev type tmpfs (rw,nosuid,mode=755)
shm on /dev/shm type tmpfs (rw,nosuid,nodev,noexec,relatime,size=65536k)
mqueue on /dev/mqueue type mqueue (rw,nosuid,nodev,noexec,relatime)
devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,...,ptmxmode=666)
sysfs on /sys type sysfs (ro,nosuid,nodev,noexec,relatime)
/dev/sda9 on /etc/resolv.conf type ext4 (rw,relatime,data=ordered)
/dev/sda9 on /etc/hostname type ext4 (rw,relatime,data=ordered)
/dev/sda9 on /etc/hosts type ext4 (rw,relatime,data=ordered)
devpts on /dev/console type devpts (rw,nosuid,noexec,relatime,...,ptmxmode=000)
proc on /proc/sys type proc (ro,nosuid,nodev,noexec,relatime)
proc on /proc/sysrq-trigger type proc (ro,nosuid,nodev,noexec,relatime)
proc on /proc/irq type proc (ro,nosuid,nodev,noexec,relatime)
proc on /proc/bus type proc (ro,nosuid,nodev,noexec,relatime)
tmpfs on /proc/kcore type tmpfs (rw,nosuid,mode=755)
root@ebc8cf2d8523:/#

When you see any examples with a prompt that looks something
like root@hostname, it means that you are running a command
within the container instead of on the Docker host.

There are quite a few bind mounts in a container, but in this case we are interested in
this one:

/dev/sda9 on /etc/hostname type ext4 (rw,relatime,data=ordered)

While the device number will be different for each container, the part we care about is
that the mount point is /etc/hostname. This links the container’s /etc/hostname to the
hostname file that Docker has prepared for the container, which by default contains
the container’s ID and is not fully qualified with a domain name.

We can check this in the container by running the following:

root@ebc8cf2d8523:/# hostname -f
ebc8cf2d8523
root@ebc8cf2d8523:/# exit

Don’t forget to exit the container shell so that we return to the
Docker host when finished.
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To set the hostname specifically, we can use the --hostname argument to pass in a
more specific value.

$ docker run --rm -ti --hostname="mycontainer.example.com" ubuntu:latest /bin/bash

Then, from within the container, we will see that the fully-qualified hostname is
defined as requested.

root@mycontainer:/# hostname -f
mycontainer.example.com
root@mycontainer:/# exit

Domain Name Service (DNS)
Just like /etc/hostname, the resolv.conf file is managed via a bind mount between the
host and container.

/dev/sda9 on /etc/resolv.conf type ext4 (rw,relatime,data=ordered)

By default, this is an exact copy of the Docker host’s resolv.conf file. If we didn’t want
this, we could use a combination of the --dns and --dns-search arguments to over‐
ride this behavior in the container:

$ docker run --rm -ti --dns=8.8.8.8 --dns=8.8.4.4 --dns-search=example1.com \
  --dns-search=example2.com ubuntu:latest /bin/bash

If you want to leave the search domain completely unset, then use
--dns-search=.

Within the container, we would still see a bind mount, but the file contents would no
longer reflect the host’s resolv.conf; instead, it now looks like this:

root@0f887071000a:/# more /etc/resolv.conf
nameserver 8.8.8.8
nameserver 8.8.4.4
search example1.com example2.com
root@0f887071000a:/# exit

Media Access Control (MAC) address
Another important piece of information that you can configure is the MAC address
for the container.

Without any configuration, a container will receive a calculated MAC address that
starts with the 02:42:ac:11 prefix.

If you need to specifically set this to a value, you can do this by running something
similar to this:
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$ docker run --rm -ti --mac-address="a2:11:aa:22:bb:33" ubuntu:latest /bin/bash

Normally you will not need to do that. But sometimes you want to reserve a particu‐
lar set of MAC addresses for your containers in order to avoid other virtualization
layers that use the same private block as Docker.

Be very careful when customizing the MAC address settings. It is
possible to cause ARP contention on your network if two systems
advertise the same MAC address. If you have a strong need to do
this, try to keep your locally administered address ranges within
some of the official ranges, like x2-xx-xx-xx-xx-xx, x6-xx-xx-xx-xx-
xx, xA-xx-xx-xx-xx-xx, and xE-xx-xx-xx-xx-xx (with x being any
valid hexidecimal character).

Storage Volumes
There are times when the default disk space allocated to a container or its ephemeral
nature is not appropriate for the job at hand and it is necessary to have storage that
can persist between container deployments.

Mounting storage from the Docker host is not a generally advisable
pattern because it ties your container to a particular Docker host
for its persistent state. But for cases like temporary cache files or
other semi-ephemeral states, it can make sense.

For the times when we need to do this, we can leverage the -v command to mount
filesystems from the host server into the container. In the following example, we are
mounting /mnt/session_data to /data within the container:

$ docker run --rm -ti -v /mnt/session_data:/data ubuntu:latest /bin/bash
root@0f887071000a:/# mount | grep data
/dev/sda9 on /data type ext4 (rw,relatime,data=ordered)
root@0f887071000a:/# exit

In the mount options, we can see that the filesystem was mounted read-write on /data
as we expected.

The mount point in the container does not need to pre-exist for
this command to work properly.

If the container application is designed to write into /data, then this data will be visi‐
ble on the host filesystem in /mnt/session_data and would remain available when this
container was stopped and a new container started with the same volume mounted.
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In Docker 1.5, a new command was added that allows the root volume of your con‐
tainer to be mounted read-only so that processes within the container cannot write
anything to the root filesystem. This prevents things like logfiles, which a developer
was unaware of, from filling up the container’s allocated disk in production. When
used in conjunction with a mounted volume, you can ensure that data is only written
into expected locations.

In our previous example, we could accomplish this by simply adding --read-
only=true to the command.

$ docker run --rm -ti --read-only=true -v /mnt/session_data:/data \
  ubuntu:latest /bin/bash
root@df542767bc17:/# mount | grep " / "
overlay on / type overlay (ro,relatime,lowerdir=...,upperdir=...,workdir=...)
root@df542767bc17:/# mount | grep session
/dev/sda9 on /session_data type ext4 (rw,relatime,data=ordered)
root@df542767bc17:/# exit

If we look closely at the mount options for the root directory, we will notice that they
are mounted with the ro option, which makes it read-only. However,
the /session_data mount is still mounted with the rw option so that our application
can successfully write to the one volume to which we have designed it to write.

Containers should be designed to be stateless whenever possible.
Managing storage creates undesirable dependencies and can easily
make deployment scenarios much more complicated.

Resource Quotas
When people discuss the types of problems that you must often cope with when
working in the cloud, the concept of the “noisy neighbor” is often near the top of the
list. The basic problem this term refers to is that other applications, running on the
same physical system as yours, can have a noticeable impact on your performance
and resource availability.

Traditional virtual machines have the advantage that you can easily and very tightly
control how much memory and CPU, among other resources, are allocated to the vir‐
tual machine. When using Docker, you must instead leverage the cgroup functional‐
ity in the Linux kernel to control the resources that are available to a Docker
container. The docker create command directly supports configuring CPU and
memory restrictions when you create a container.

Creating a Container | 67



Constraints are applied at the time of container creation. Con‐
straints that you apply at creation time will exist for the life of the
container. In most cases, if you need to change them, then you
need to create a new container from the same image and change
the constraints, unless you manipulate the kernel cgroups directly
under the /sys filesystem.

There is an important caveat here. While Docker supports CPU and memory limits,
as well as swap limits, you must have these capabilities enabled in your kernel in
order for Docker to take advantage of them. You might need to add these as
command-line parameters to your kernel on startup. To figure out if your kernel sup‐
ports these limits, run docker info. If you are missing any support, you will get
warning messages at the bottom, like:

WARNING: No swap limit support

The details regarding getting cgroup support configured for your
kernel are distribution-specific, so you should consult the Docker
documentation if you need help configuring things.

CPU shares
Docker thinks of CPU in terms of “cpu shares.” The computing power of all the CPU
cores in a system is considered to be the full pool of shares. 1024 is the number that
Docker assigns to represent the full pool. By configuring a container’s CPU shares,
you can dictate how much time the container gets to use the CPU for. If you want the
container to be able to use at most half of the computing power of the system, then
you would allocate it 512 shares. Note that these are not exclusive shares, meaning
that assigning all 1024 shares to a container does not prevent all other containers
from running. Rather it’s a hint to the scheduler about how long each container
should be able to run each time it’s scheduled. If we have one container that is alloca‐
ted 1024 shares (the default) and two that are allocated 512, they will all get scheduled
the same number of times. But if the normal amount of CPU time for each process is
100 microseconds, the containers with 512 shares will run for 50 microseconds each
time, whereas the container with 1024 shares will run for 100 microseconds.

Let’s explore a little bit how this works in practice. For the following examples, we are
going to use a new Docker image that contains the stress command for pushing a
system to its limits.

When we run stress without any cgroup constraints, it will use as many resources as
we tell it to. The following command creates a load average of around 5 by creating
two CPU-bound processes, one I/O-bound process, and two memory allocation pro‐
cesses:
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$ docker run --rm -ti progrium/stress \
  --cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 120s

This should be a reasonable command to run on any modern com‐
puter system, but be aware that it is going to stress the host system,
so don’t do this in a location that can’t take the additional load, or
even a possible failure, due to resource starvation.

If you run the top command on the Docker host, near the end of the two-minute run,
you can see how the system is affected by the load created by the stress program.

In the following code, we are running on a system with two CPUs.

$ top -bn1 | head -n 15
top - 20:56:36 up 3 min,  2 users,  load average: 5.03, 2.02, 0.75
Tasks:  88 total,   5 running,  83 sleeping,   0 stopped,   0 zombie
%Cpu(s): 29.8 us, 35.2 sy,  0.0 ni, 32.0 id,  0.8 wa,  1.6 hi,  0.6 si,  0.0 st
KiB Mem:   1021856 total,   270148 used,   751708 free,    42716 buffers
KiB Swap:        0 total,        0 used,        0 free.    83764 cached Mem

  PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND
  810 root      20   0    7316     96      0 R  44.3  0.0   0:49.63 stress
  813 root      20   0    7316     96      0 R  44.3  0.0   0:49.18 stress
  812 root      20   0  138392  46936    996 R  31.7  4.6   0:46.42 stress
  814 root      20   0  138392  22360    996 R  31.7  2.2   0:46.89 stress
  811 root      20   0    7316     96      0 D  25.3  0.0   0:21.34 stress
    1 root      20   0  110024   4916   3632 S   0.0  0.5   0:07.32 systemd
    2 root      20   0       0      0      0 S   0.0  0.0   0:00.04 kthreadd
    3 root      20   0       0      0      0 S   0.0  0.0   0:00.11 ksoftirqd/0

If you want run the exact same stress command again, with only half the amount of
available CPU time, you can run it like this:

$ docker run --rm -ti -c 512 progrium/stress \
  --cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 120s

The -c 512 is the flag that does the magic, allocating 512 CPU shares to this con‐
tainer. Note that the effect might not be noticeable on a system that is not very busy.
That’s because the container will continue to be scheduled for the same time-slice
length whenever it has work to do, unless the system is constrained for resources. So
in our case, the results of a top command on the host system will likely look exactly
the same, unless you run a few more containers to give the CPU something else to do.
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Unlike virtual machines, Docker’s cgroup-based constraints on
CPU shares can have unexpected consequences. They are not hard
limits; they are a relative limit, similar to the nice command. An
example is a container that is constrained to half the CPU shares,
but is on a system that is not very busy. Because the CPU is not
busy, the limit on the CPU shares would have only a limited effect
because there is no competition in the scheduler pool. When a sec‐
ond container that uses a lot of CPU is deployed to the same sys‐
tem, suddenly the effect of the constraint on the first container will
be noticeable. Consider this carefully when constraining containers
and allocating resources.

CPU pinning
It is also possible to pin a container to one or more CPU cores. This means that work
for this container will only be scheduled on the cores that have been assigned to this
container.

In the following example, we are running our stress container pinned to the first of
two CPUs, with 512 CPU shares. Note that everything following the container image
here are parameters to the stress command, not docker.

$ docker run --rm -ti -c 512 --cpuset=0 progrium/stress \
  --cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 120s

The --cpuset argument is zero-indexed, so your first CPU core is
0. If you tell Docker to use a CPU core that does not exist on the
host system, you will get a Cannot start container error. On our
two-CPU example host, you could test this by using --

cpuset=0,1,2.

If we run top again, we should notice that the percentage of CPU time spent in user
space (us) is lower than it previously was, since we have restricted two CPU-bound
processes to a single CPU.

%Cpu(s): 18.5 us, 22.0 sy,  0.0 ni, 57.6 id,  0.5 wa,  1.0 hi,  0.3 si,  0.0 st

When you use CPU pinning, additional CPU sharing restrictions
on the container only take into account other containers running
on the same set of cores.

Memory
We can control how much memory a container can access in a manner similar to
constraining the CPU. There is, however, one fundamental difference: while con‐
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straining the CPU only impacts the application’s priority for CPU time, the memory
limit is a hard limit. Even on an unconstrained system with 96 GB of free memory, if
we tell a container that it may only have access to 24 GB, then it will only ever get to
use 24 GB regardless of the free memory on the system. Because of the way the virtual
memory system works on Linux, it’s possible to allocate more memory to a container
than the system has actual RAM. In this case, the container will resort to using swap
in the event that actual memory is not available, just like a normal Linux process.

Let’s start a container with a memory constraint by passing the -m option to the
docker run command:

$ docker run --rm -ti -m 512m progrium/stress \
  --cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 120s

When you use the -m option alone, you are setting both the amount of RAM and the
amount of swap that the container will have access to. So here we’ve constrained the
container to 512 MB of RAM and 512 MB of additional swap space. Docker supports
b, k, m, or g, representing bytes, kilobytes, megabytes, or gigabytes, respectively. If
your system somehow runs Linux and Docker and has mulitple terabytes of memory,
then unfortunately you’re going to have to specify it in gigabytes.

If you would like to set the swap separately or disable it altogether, then you need to
also use the --memory-swap option. The --memory-swap option defines the total
amount of memory and swap available to the container. If we rerun our previous
command, like so:

$ docker run --rm -ti -m 512m --memory-swap=768m progrium/stress \
  --cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 120s

Then we are telling the kernel that this container can have access to 512 MB of mem‐
ory and 256 MB of additional swap space. Setting the --memory-swap option to -1
will disable the swap completely within the container.

Unlike CPU shares, memory is a hard limit! This is good because
the constraint doesn’t suddenly make a noticeable effect on the
container when another container is deployed to the system. But it
does mean that you need to be careful that the limit closely matches
your container’s needs because there is no wiggle room.

So, what happens if a container reaches its memory limit? Well, let’s give it a try by
modifying one of our previous commands and lowering the memory significantly:

$ docker run --rm -ti -m 200m --memory-swap=300m progrium/stress \
  --cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 120s

Where all our other runs of the stress container ended with the line:

stress: info: [1] successful run completed in 120s
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We see that this run quickly fails with the line:

stress: FAIL: [1] (452) failed run completed in 0s

This is because the container tries to allocate more memory than it is allowed, and the
Linux Out of Memory (OOM) killer is invoked and starts killing processes within the
cgroup to reclaim memory. Since our container has only one running process, this
kills the container.

ulimits
Another common way to limit resources avaliable to a process in Unix is through the
application of user limits. The following code is a list of the types of things that can
usually be configured by setting soft and hard limits via the ulimit command:

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 5835
max locked memory (kbytes, -l) 64
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 10240
cpu time (seconds, -t) unlimited
max user processes (-u) 1024
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

Before the release of Docker 1.6, all containers inherited the ulimits of the Docker
daemon. This is usually not appropriate because the Docker server requires more
resources to perform its job than any individual container.

It is now possible to configure the Docker daemon with the default user limits that
you want to apply to every container. The following command would tell the Docker
daemon to start all containers with a hard limit of 150 open files and 20 processes:

$ sudo docker -d --default-ulimit nofile=50:150 --default-ulimit nproc=10:20

You can then override these ulimits on a specific container by passing in values using
the --ulimit argument.

$ docker run -d --ulimit nproc=100:200 nginx

There are some additional advanced commands that can be used when creating con‐
tainers, but this covers many of the more common use cases. The Docker client docu‐
mentation lists all the available options and is kept current with each Docker release.
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Starting a Container
Earlier in the chapter we used the docker create command to create our container.
When we are ready to start the container, we can use the docker start command.

Let’s say that we needed to run a copy of Redis, a common key-value store. We won’t
really do anything with this Redis container, but it’s a long-lived process and serves as
an example of something we might do in a real environment. We could first create the
container using a command like the one shown here:

$ docker create -p 6379:6379 redis:2.8
Unable to find image 'redis:2.8' locally
30d39e59ffe2: Pull complete
...
868be653dea3: Pull complete
511136ea3c5a: Already exists
redis:2.8: The image you are pulling has been verified. Important: ...
Status: Downloaded newer image for redis:2.8
6b785f78b75ec2652f81d92721c416ae854bae085eba378e46e8ab54d7ff81d1

The command ends with the full hash that was generated for the container. However,
if we didn’t know the full or short hash for the container, we could list all the contain‐
ers on the system, whether they are running or not, using:

$ docker ps -a
CONTAINER ID  IMAGE                   COMMAND               ...
6b785f78b75e  redis:2.8               "/entrypoint.sh redi  ...
92b797f12af1  progrium/stress:latest  "/usr/bin/stress --v  ...

We can then start the container with the following command:

$ docker start 6b785f78b75e

Most Docker commands will work with the full hash or a short
hash. In the previous example, the full hash for the container is
6b785f78b75ec2652f81d92…bae085eba378e46e8ab54d7ff81d1, but
the short hash that is shown in most command output is
6b785f78b75e. This short hash consists of the first 12 characters of
the full hash.

To verify that it’s running, we can run:

$ docker ps
CONTAINER ID  IMAGE      COMMAND               ...  STATUS       ...
6b785f78b75e  redis:2.8  "/entrypoint.sh redi  ...  Up 2 minutes ...
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Auto-Restarting a Container
In many cases, we want our containers to restart if they exit. Some containers are just
very short-lived and come and go quickly. But for production applications, for
instance, you expect them to be up after you’ve told them to run. We can tell Docker
to do that on our behalf.

The way we tell Docker to do that is by passing the --restart argument to the
docker run command. It takes three values: no, always, or on-failure:#. If restart is
set to no, the container will never restart if it exits. If it is set to always, then the con‐
tainer will restart whenever the container exits with no regard to the exit code. If
restart is set to on-failure:3, then whenever the container exits with a nonzero exit
code, Docker will try to restart the container three times before giving up.

We can see this in action by rerunning our last memory-constrained stress container
without the --rm argument, but with the --restart argument.

$ docker run -ti --restart=on-failure:3 -m 200m --memory-swap=300m \
  progrium/stress --cpu 2 --io 1 --vm 2 --vm-bytes 128M --timeout 120s

In this example, we will see the output from the first run appear on the console before
it dies. If we run a docker ps immediately after the container dies, we will see that
Docker is attempting to restart the container.

$ docker ps
...  IMAGE                   ...  STATUS                                ...
...  progrium/stress:latest  ...  Restarting (1) Less than a second ago ...

It will continue to fail because we have not given it enough memory to function prop‐
erly. After five attempts, Docker will give up and we will see the container disappear
from the the output of docker ps.

Stopping a Container
Containers can be stopped and started at will. You might think that starting and stop‐
ping are analogous to pausing and resuming a normal process. It’s not quite the same,
though. When stopped, the process is not paused; it actually exits. And when a con‐
tainer is stopped, it no longer shows up in the normal docker ps output. On reboot,
docker will attempt to start all of the containers that were running at shutdown. It
uses this same mechanism, and it’s also useful when testing or for restarting a failed
container. We can simply pause a Docker container with docker pause and unpause, 
discussed later. But let’s stop our container now:

$ docker stop 6b785f78b75e
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
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Now that we have stopped the container, nothing is in the ps list! We can start it back
up with the container ID, but it would be really inconvenient to have to remember
that. So docker ps has an additional option (-a) to show all containers, not just the
running ones.

$ docker ps -a
CONTAINER ID  IMAGE                  STATUS                   ...
6b785f78b75e  progrium/stress:latest Exited (0) 2 minutes ago ...

That STATUS field now shows that our container exited with a status code of 0 (no
errors). We can start it back up with all of the same configuration it had before:

docker start 6b785f78b75e
6b785f78b75e
$ docker ps -a
CONTAINER ID IMAGE                   ... STATUS    ...
6b785f78b75e progrium/stress:latest  Up 15 seconds ...

Voila, our container is back up and running.

Remember that containers exist even when they are not started,
which means that you can always restart a container without need‐
ing to recreate it. Although memory contents will have been lost,
all of the container’s filesystem contents and metadata, including
environment variables and port bindings, are saved and will still be
in place when you restart the container.

We keep talking about the idea that containers are just a tree of processes that interact
with the system in essentially the same was as any other process on the server. That
means that we can send them Unix signals, which they can respond to. In the previ‐
ous docker stop example, we’re sending the container a SIGTERM signal and waiting
for the container to exit gracefully. Containers follow the same process group signal
propagation that any other process group would receive on Linux.

A normal docker stop sends a normal SIGTERM signal to the process. If you want to
force a container to be killed if it hasn’t stopped after a certain amount of time, you
can use the -t argument, like this:

$ docker stop -t 25 6b785f78b75e

This tells Docker to initially send a SIGTERM signal as before, but then if the container
has not stopped within 25 seconds, to send a SIGKILL signal to forcefully kill it.

Although stop is the best way to shut down your containers, there are times when it
doesn’t work and we need to forcefully kill a container.
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Killing a Container
We saw what it looks like to use docker stop to stop a container, but often if a pro‐
cess is misbehaving, you just want it to exit immediately.

We have docker kill for that. It looks pretty much like docker stop:

$ docker kill 6b785f78b75e
6b785f78b75e

A docker ps nows shows that the container is no longer running, as expected:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Just because it was killed rather than stopped does not mean you can’t start it again,
though. You can just issue a docker start like you would for a nicely stopped con‐
tainer. Sometimes you might want to send another signal to a container, one that is
not stop or kill. Like the Linux kill command, docker kill supports sending any
Unix signal. Let’s say we wanted to send a USR1 signal to our container to tell it to do
something like reconnect a remote logging session. We could do the following:

$ docker kill --signal=USR1 6b785f78b75e
6b785f78b75e

If our container actually did something with the USR1 signal, it would now do it. Since
we’re just running a bash shell, though, it just continues on as if nothing happened.
Try sending a HUP signal, though, and see what happens. Remember that a HUP is the
signal that is sent when the terminal closes on a foreground process.

Pausing and Unpausing a Container
Sometimes we really just want to stop our container as described above. But there are
a number of times when we just don’t want our container to do anything for a while.
That could be because we’re taking a snapshot of its filesystem to create a new image,
or just because we need some CPU on the host for a while. If you’re used to normal
Unix process handling, you might wonder how this actually works since container‐
ized processes are just processes.

Pausing leverages the cgroups freezer, which essentially just prevents your process
from being scheduled until you unfreeze it. This will prevent the container from
doing anything while maintaining its overall state, including memory contents.
Unlike stopping a container, where the processes are made aware that they are stop‐
ping via the SIGSTOP signal, pausing a container doesn’t send any information to the
container about its state change. That’s an important distinction. Several Docker
commands use pausing and unpausing internally as well. Here’s how we pause a con‐
tainer:

76 | Chapter 5: Working with Docker Containers

http://bit.ly/1F8QRuv


$ docker pause 6b785f78b75e

If we look at the list of running containers, we will now see that the Redis container
status is listed as (Paused).

# docker ps
CONTAINER ID  IMAGE                   ...  STATUS                  ...
6b785f78b75e  progrium/stress:latest  ...  Up 36 minutes (Paused)  ...

Attempting to use the container in this paused state would fail. It’s present, but noth‐
ing is running. We can now resume the container using the docker unpause com‐
mand.

$ docker unpause 6b785f78b75e
6b785f78b75e
$ docker ps
CONTAINER ID  IMAGE                   ... STATUS ...
6b785f78b75e  progrium/stress:latest  ... Up 1 second ...

It’s back to running, and docker ps correctly reflects the new state. Note that it shows
“Up 1 second” now, which is when we unpaused it, not when it was last run.

Cleaning Up Containers and Images
After running all these commands to build images, create containers, and run them,
we have accumulated a lot of image layers and container folders on our system.

We can list all the containers on our system using the docker ps -a command and
then delete any of the containers in the list, as follows:

$ docker ps -a
CONTAINER ID  IMAGE                   ...
92b797f12af1  progrium/stress:latest  ...
...
$ docker rm 92b797f12af1

We can then list all the images on our system using:

$ docker images
REPOSITORY       TAG     IMAGE ID      CREATED       VIRTUAL SIZE
ubuntu           latest  5ba9dab47459  3 weeks ago   188.3 MB
redis            2.8     868be653dea3  3 weeks ago   110.7 MB
progrium/stress  latest  873c28292d23  7 months ago  281.8 MB

We can then delete an image and all associated filesystem layers by running:

$ docker rmi 873c28292d23

If you try to delete an image that is in use by a container, you will
get a Conflict, cannot delete error. You should stop and delete the
container(s) first.
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There are times, especially during development cycles, when it makes sense to com‐
pletely clean off all the images or containers from your system. There is no built-in
command for doing this, but with a little creativity it can be accomplished reasonably
easily.

To delete all of the containers on your Docker hosts, you can use the following com‐
mand:

$ docker rm $(docker ps -a -q)

And to delete all the images on your Docker host, this command will get the job
done:

$ docker rmi $(docker images -q -)

Newer versions of the docker ps and docker images commands both support a filter
argument that can make it easy to fine-tune your delete commands for certain cir‐
cumstances.

To remove all containers that exited with a nonzero state, you can use this filter:

$ docker rm $(docker ps -a -q --filter 'exited!=0')

And to remove all untagged images, you can type:

$ docker rmi $(docker images -q -f "dangling=true")

You can read the official Docker documentation to explore the fil‐
tering options. At the moment there are very few filters to choose
from, but more will likely be added over time, and if you are really
interested, Docker is an open source project, so they are always
open to public code contributions.
It is also possible to make your own very creative filters by string‐
ing together commands using pipes (|) and other similar techni‐
ques.

Next Steps
In the next chapter, we’ll do more exploration of what Docker brings to the table. For
now it’s probably worth doing a little experimentation on your own. We suggest exer‐
cising some of the container control commands we covered here so that you’re famil‐
iar with the command-line options and the overall syntax. Try interacting with
stoppped or paused containers to see what you can see. Then when you’re feeling
confident, head on into Chapter 6!
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CHAPTER 6

Exploring Dockert

Now that we have some experience working with Docker containers and images, we
can explore some of its other capabilities. In this chapter, we’ll continue to use the
docker command-line tool to talk to the running docker daemon that you’ve config‐
ured, while visiting some of the other fundamental commands.

Docker provides commands to do a number of additional things easily:

• Printing the Docker version
• Viewing the server information
• Downloading image updates
• Inspecting containers
• Entering a running container
• Returning a result
• Viewing logs
• Monitoring statistics

Let’s take a look at some of those and some community tooling that augments Dock‐
er’s native capabilities.

Printing the Docker Version
If you completed the last chapter, you have a working Docker daemon on a Linux
server or virtual machine, and you’ve started a base container to make sure it’s all
working. If you haven’t set that up already and you want to try out the steps in the
rest of the book, you’ll want to follow the installation steps in Chapter 3 before you
move on with this section.
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The absolute simplest thing you can do with Docker is print the versions of the vari‐
ous components. It might not sound like much, but this is a useful tool to have in
your belt because the server and API are often not backwards compatible with older
clients. Knowing how to show the version will help you troubleshoot certain types of
connection issues. Note that this command actually talks to the remote Docker
server. If you can’t connect to the server for any reason, the client will complain. If
you find that you have a connectivity problem, you should probably revisit the steps
in the last chapter.

You can always directly log in to the Docker server and run docker
commands from a shell on the server if you are troubleshooting
issues or simply do not want to use the docker client to connect to
a remote system.

Since we just installed all of the Docker components at the same time, when we run
docker version, we should see that all of our versions match:

$ docker version
Client version: 1.3.1
Client API version: 1.15
Go version (client): go1.3.3
Git commit (client): 4e9bbfa
OS/Arch (client): linux/amd64
Server version: 1.3.1
Server API version: 1.15
Go version (server): go1.3.3
Git commit (server): 4e9bbfa

Notice how we have different lines representing the client, server, and API versions.
It’s important to note that different versions of the command-line tools might use the
same Docker API version. Even when they do, sometimes Docker won’t let you talk
to a remote server that doesn’t exactly match. Now you know how to verify this infor‐
mation.

Server Information
We can also find out a little bit about the Docker server itself via the Docker client.
Later we’ll talk more about what all of this means, but you can find out which filesys‐
tem backend the Docker server is running, which kernel version it is on, which oper‐
ating system it is running on, and how many containers and images are currently
stored there. If you run docker info, you will see something similar to this:

$ docker info
Containers: 22
Images: 180
Storage Driver: aufs
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 Root Dir: /var/lib/docker/aufs
 Dirs: 224
Execution Driver: native-0.2
Kernel Version: 3.8.0-29-generic
Operating System: Ubuntu precise (12.04.3 LTS)

Depending on how your Docker daemon is set up, this might look somewhat differ‐
ent. Don’t be concerned about that; this is just to give you an example. Here we can
see that our server is an Ubuntu 12.04.3 LTS release running the 3.8.0 Linux kernel
and backed with the AUFS filesystem driver. We also have a lot of images! With a
fresh install, this number should be zero.

In most installations, /var/lib/docker will be the default root directory used to store
images and containers. If you need to change this, you can edit your Docker startup
scripts to launch the daemon, with the --graph argument pointing to a new storage
location. To test this by hand, you could run something like this:

$ sudo docker -d
-H unix:///var/run/docker.sock \
-H tcp://0.0.0.0:2375 --graph="/data/docker"

Downloading Image Updates
We’re are going to use an Ubuntu base image for the following examples. Even if you
have already grabbed the Ubuntu base image once, you can pull it again and it will
automatically pick up any updates that have been published since you last ran it.
That’s because latest is a tag that, by convention, is always moved to the most recent
version of the image that has been published to the image registry. Invoking the pull
will look like this:

$ docker pull ubuntu:latest

Pulling repository ubuntu
5506de2b643b: Download complete
511136ea3c5a: Download complete
d497ad3926c8: Download complete
ccb62158e970: Download complete
e791be0477f2: Download complete
3680052c0f5c: Download complete
22093c35d77b: Download complete

That command pulled down only the layers that have changed since we last ran the
command. You might see a longer or shorter list, or even an empty list, depending on
when you ran it and what changes have been pushed to the registry since then.
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It’s good to remember that even though you pulled latest, docker
won’t automatically keep the local image up-to-date for you. You’ll
be responsible for doing that yourself. However, if you deploy an
image based on a newer copy of ubuntu:latest, Docker will
download the missing layers during the deployment just like you
would expect.

As of Docker 1.6, it is now possible to pull a specific version of an image from Docker
Hub or any registry based on Docker’s Registry 2.0 codebase by using the digest
attached to the desired image. This is useful when you want to ensure that you are
pulling a very specific image build and don’t want to rely on a tag, which can poten‐
tially be moved.

docker pull ubuntu@sha256:2f9a...82cf

Inspecting a Container
Once you have a container created, running or not, you can now use docker to see
how it was configured. This is is often useful in debugging, and also has some other
information that can be useful when identifying a container.

For this example, let’s go ahead and start up a container.

$ docker run -d -t ubuntu /bin/bash
3c4f916619a5dfc420396d823b42e8bd30a2f94ab5b0f42f052357a68a67309b

We can list all our running containers with docker ps to ensure everything is run‐
ning as expected, and to copy the container ID.

$ docker ps
CONTAINER ID  IMAGE         COMMAND     ... STATUS        ...  NAMES
3c4f916619a5  ubuntu:latest "/bin/bash" ... Up 31 seconds ...  angry_mestorf

In this case, our ID is 3c4f916619a5. We could also use angry_mestorf, which is the
dynamic named assigned to our container. Underlying tools all need the unique con‐
tainer ID, though, so it’s useful to get into the habit of looking at that first. As is the
case in many revision control systems, this hash is actually just the prefix of a much
longer hash. Internally, the kernel uses a 64-byte hash to identify the container. But
that’s painful for humans to use, so Docker supports the shortened hash.

The output to docker inspect is pretty verbose, so we’ll cut it down in the following
code block to a few values worth pointing out. You should look at the full output to
see what else you think is interesting:

$ docker inspect 3c4f916619a5
[{
    "Args": [],
    "Config": {
        "Cmd": [
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            "/bin/bash"
        ],
        "Env": [
            "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
        ],
        "Hostname": "3c4f916619a5",
        "Image": "ubuntu",
    },
    "Created": "2014-11-07T22:06:32.229471304Z",
    "Id": "3c4f916619a5dfc420396d823b42e8bd30a2f94ab5b0f42f052357a68a67309b",
    "Image": "5506de2b643be1e6febbf3b8a240760c6843244c41e12aa2f60ccbb7153d17f5"
}

Note that long "Id" string. That’s the full unique identifier of this container. Luckily
we can use the short name, even if that’s still not especially convenient. We can also
see the exact time when the container was created in a much more precise way than
docker ps gives us.

Some other interesting things are shown here as well: the top-level command in the
container, the environment that was passed to it at creation time, the image on which
it’s based, and the hostname inside the container. All of these are configurable at con‐
tainer creation time if you need to do so. The usual method for passing configuration
to containers, for example, is via environment variables, so being able to see how a
container was configured via docker inspect can reveal a lot when debugging.

Getting Inside a Running Container
You can pretty easily get a shell running in a new container as we demonstrated above
with docker run. But it’s not the same as getting a new shell inside an existing con‐
tainer that is actively running your application. Every time you use docker run, you
get a new container. But if you have an existing container that is running an applica‐
tion and you need to debug it from inside the container, you need something else.

Because Docker originally used the LXC backend by default, the Linux lxc-attach
command was the easiest way to enter a running container. But once Docker shifted
to using libcontainer by default, this is no longer useful for most people. Since
Docker containers are Linux namespaces, however, tools like the docker exec com‐
mand and nsenter support this functionality more broadly.

docker exec
First let’s look at the newest and best way to get inside a running container. From
Docker 1.3 and up, the docker daemon and docker command-line tool support
remotely executing a shell into a running container via docker exec. So let’s start up
a container in background mode, and then enter it using docker exec.
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We’ll need our container’s ID, like we did above when we inspected it. I just did that,
and my container’s ID is 589f2ad30138. We can now use that to get inside the con‐
tainer. The command line to docker exec, unsurprisingly, looks a lot like the com‐
mand line to docker run. We request a pseudo-tty and an interactive command:

$ docker exec -t -i 589f2ad30138 /bin/bash
root@589f2ad30138:/#

Note that we got a command line back that tells us the ID of the container we’re run‐
ning inside. That’s pretty useful for keeping track of where we are. We can now run a
ps to see what else is running inside our container. We should see our other bash
process that we backgrounded earlier.

root@589f2ad30138:/# ps -ef
UID        PID  PPID  C STIME TTY          TIME CMD
root         1     0  0 23:13 ?        00:00:00 /bin/bash
root         9     0  1 23:14 ?        00:00:00 /bin/bash
root        17     9  0 23:14 ?        00:00:00 ps -ef

You can also run additional processes in the background via 
docker exec. You use the -d option just like with docker run. But
you should think hard about doing that for anything but debugging
because you lose the repeatability of the image deployment if you
depend on this mechanism. Other people would then have to know
what to pass to docker exec to get the desired functionality. If
you’re tempted to do this, you would probably reap bigger gains
from rebuilding your container image to launch both processes in a
repeatable way.

nsenter
Part of the core util-linux package from kernel.org is nsenter, short for “Name‐
space Enter,” which allows you to enter any Linux namespace. In Chapter 10, we’ll go
into more detail on namespaces. But they are the core of what makes a container a
container. Using nsenter, therefore, we can get into a Docker container from the
server itself, even in situations where the Docker daemon is not responding and we
can’t use docker exec. nsenter can also be used to manipulate things in a container
as root on the server that would otherwise be prevented by docker exec, for example.
This can be really useful when debugging. Most of the time, docker exec is all you
need. But you should have nsenter in your tool belt.

Most Linux distributions ship with the linux-utils package that contains nsenter.
But few ship one that is new enough to have nsenter itself installed, because it’s a
recent addition to the package. So the easiest way to get ahold of nsenter is to install
it via a third-party Docker container. This works by pulling a Docker image from the
Docker Hub registry and then running a specially crafted Docker container that will
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install the nsenter command-line tool into /usr/local/bin. This might seem strange at
first, but it’s a clever way to allow you to install nsenter to any Docker server
remotely using nothing more than the docker command.

The following code shows how we install nsenter to /usr/local/bin on your Docker
server:

$ docker run --rm -v /usr/local/bin:/target jpetazzo/nsenter
Unable to find image 'jpetazzo/nsenter' locally
Pulling repository jpetazzo/nsenter
9e4ef84f476a: Download complete
511136ea3c5a: Download complete
71d9d77ae89e: Download complete
Status: Downloaded newer image for jpetazzo/nsenter:latest
Installing nsenter to /target
Installing docker-enter to /target

You should be very careful about doing this! It’s always a good idea
to check out what you are running, and particularly what you are
exposing part of your filesystem to, before you run a third-party
container on your system. With -v, we’re telling Docker to expose
the host’s /usr/local/bin directory into the running container
as /target. When the container starts, it is then copying an exe‐
cutable into that directory on our host’s filesystem. In Chapter 10,
we will discuss some security frameworks and commands that can
be leveraged to prevent potentially nefarious container activities.

Unlike docker exec, which can be run remotely, nsenter requires that you run it on
the server itself. The README in the GitHub repo explains how to set this up to work
over SSH automatically if you want to do that. For our purposes, we’ll log in to our
Docker server via SSH and then invoke the command from the server. In any case,
like with docker exec, we need to have a container running. You should still have
one running from above. If not, go back and start one, and then ssh into your server.

docker exec is pretty simple, but nsenter is a little inconvenient to use. It needs to
have the PID of the actual top-level process in your container. That’s less than obvi‐
ous to find and requires a few steps. Luckily there’s a convenience wrapper installed
by that Docker container we just ran, called docker-enter, which takes away the
pain. But before we jump to the convenience wrapper, let’s run nsenter by hand so
you can see what’s going on.

First we need to find out the ID of the running container, because nsenter needs to
know that to access it. This is the same as previously shown for docker inspect and
docker exec:
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$ docker ps
CONTAINER ID  IMAGE          COMMAND      ...  NAMES
3c4f916619a5  ubuntu:latest  "/bin/bash"  ...  grave_goldstine

The ID we want is that first field, 3c4f916619a5. Armed with that, we can now find
the PID we need. We do that like this:

$ PID=$(docker inspect --format \ 3c4f916619a5)

This will store the PID we care about into the PID environment variable. We need to
have root privilege to do what we’re going to do. So you should either su to root or
use sudo on the command line. Now we invoke nsenter:

$ sudo nsenter --target $PID --mount --uts --ipc --net --pid
root@3c4f916619a5:/#

If the end result looks a lot like docker exec, that’s because it does almost exactly the
same thing under the hood!

There are a lot of command-line options there, and what they’re doing is telling
nsenter which parts of the container we need access to. Generally you want all of
them, so you might expect that to be the default, but it’s not, so we specify them all.

Neither nsenter or docker exec work well for exploring a con‐
tainer that does not contain a Unix shell. In this case you usually
need to explore the container from the Docker server by navigating
directly to where the container filesystem resides on storage. This
will typically look something like this /var/lib/docker/aufs/mnt/
365c…87a3,, but will vary based on the Docker setup, storage back‐
end, and container hash. You can determine your Docker root
directory by running docker info.

Back at the beginning of this section we mentioned that there is a convenience wrap‐
per called docker-enter that gets installed by running the installation Docker con‐
tainer. Having now seen the mechanism involved with running nsenter, you can now
appreciate that if you actually just want to enter all the namespaces for the container
and skip several steps, you can do this:

$ sudo docker-enter 3c4f916619a5 /bin/bash
root@3c4f916619a5:/#

That’s it! Once we’ve explained namespaces more in Chapter 10, you’ll get a better
understanding of why we showed you how it works in more detail than that.

86 | Chapter 6: Exploring Dockert



Exploring the Shell
One way or another, either by launching a container with a foreground shell or via
one of the other mechanisms above, we’ve got a shell running inside a container. So,
let’s look around a little bit. What processes are running?

$ ps -ef
UID        PID  PPID  C STIME TTY          TIME CMD
root         1     0  0 22:12 ?        00:00:00 /bin/bash
root        12     1  0 22:16 ?        00:00:00 ps -ef

Wow, that’s not much, is it? It turns out that when we told docker to start bash, we
didn’t get anything but that. We’re inside a whole Linux distribution image, but no
other processes started for us automatically. We only got what we asked for. It’s good
to keep that in mind going forward.

Docker containers don’t, by default, start anything in the back‐
ground like a full virtual machine would. They’re a lot lighter
weight than that and therefore don’t start an init system. You can,
of course, run a whole init system if you need to, but you have to
ask for it. We’ll talk about that in a later chapter.

That’s how we get a shell running in a container. You should feel free to poke around
and see what else looks interesting inside the container. Note that you might have a
pretty limited set of commands available. You’re in an Ubuntu distribution, though,
so you can fix that by using apt-get to install more packages. Note that these are only
going to be around for the life of this container. You’re modifying the top layer of the
container, not the base image!

Returning a Result
Most people would not think of spinning up a virtual machine to run a single process
and then return the result because doing so would be very time consuming and
require booting a whole operating system to simply execute one command. But
Docker doesn’t work the same way as virtual machines: containers are very light‐
weight and don’t have to boot up like an operating system. Running something like a
quick background job and waiting for the exit code is a normal use case for a Docker
container. You can think of it as a way to get remote access to a containerized system
and have access to any of the individual commands inside that container with the
ability to pipe data to and from them and return exit codes.

This can be useful in lots of scenarios: you might, for instance, have system health
checks run this way remotely, or have a series of machines with processes that you
spin up via Docker to process a workload and then return. The docker command-
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line tools proxy the results to the local machine. If you run the remote command in
foreground mode and don’t specify doing otherwise, docker will redirect its stdin to
the remote process, and the remote process’s stdout and stderr to your terminal.
The only things we have to do to get this functionality are to run the command in the
foreground and not allocate a TTY on the remote. This is actually the default config‐
uration! No command-line options are required. We do need to have a container con‐
figured and ready to run.

The following code shows what you can do:

$ docker run 8d12decc75fe /bin/false
$ echo $?
1
$ docker run 8d12decc75fe /bin/true
$ echo $?
0
$ docker run 8d12decc75fe /bin/cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
nobody:x:99:99:Nobody:/:/sbin/nologin
$ docker run 8d12decc75fe /bin/cat /etc/passwd | wc -l
8

Here we executed /bin/false on the remote server, which will always exit with a sta‐
tus of 1. Notice how docker proxied that result to us in the local terminal. Just to
prove that it returns other results, we also run /bin/true, which will always return a
0. And there it is.

Then we actually ask docker to run cat /etc/passwd on the remote container. What
we get is the result of that container’s version of the /etc/passwd file. Because that’s
just regular output on stdout, we can pipe it into local commands just like we would
anything else.

The previous code pipes the output into the local wc command, not
a wc command in the container. The pipe itself is not passed to the
container. If you want to pass the whole command, including the
pipes, to the server, you need to invoke a complete shell on the
remote side and pass a quoted command, like bash -c "<your
command> | <something else>". In the previous code, that would
be: docker run 8d12decc75fe /bin/bash -c "/bin/cat /etc/
passwd | wc -l".

88 | Chapter 6: Exploring Dockert



Docker Logs
Logging is a critical part of any production application. There are common ways we
expect to interact with application logs on Linux systems. If you’re running a process
on a box, you might expect the output to go to a local logfile that you could read
through. Or perhaps you might expect the output to simply be logged to the kernel
buffer where it can be read from dmesg. Because of the container’s restrictions, nei‐
ther of these will work without some gyrations to do so. But that’s OK, because simple
logging is first class in Docker. There are limitations to this mechanism, which we’ll
explain in a minute, but for the simple case it works well. The mechanism is docker
logs.

The way this works is that anything sent to stdout or stderr in the container is cap‐
tured by the Docker daemon and streamed into a configurable backend, which is by
default a JSON file for each container. We’ll cover that first, then talk about other
options. The default logging mechanism lets us retrieve logs for any container at any
time like this, showing some logs from a container running nginx:

$ docker logs 3c4f916619a5
nginx stderr | 2014/11/20 00:34:56 [notice] 12#0: using the "epoll" ...
nginx stderr | 2014/11/20 00:34:56 [notice] 12#0: nginx/1.0.15
nginx stderr | 2014/11/20 00:34:56 [notice] 12#0: built by gcc 4.4.7 ...
nginx stderr | 2014/11/20 00:34:56 [notice] 12#0: OS: Linux 3.8.0-35-generic

This is nice because Docker allows you to get the logs remotely, right from the com‐
mand line, on demand. That’s really useful for low-volume logging.

The actual files backing this logging are on the Docker server itself, by default
in /var/lib/docker/containers/<container_id>/ where the <container_id> is replaced
by the actual container ID. If you take a look at one of those files, you’ll see it’s a file
with each line representing a JSON object. It will look something like this:

{"log":"2015-01-02 23:58:51,003 INFO success: running.\r\n",
"stream":"stdout",
"time":"2015-01-02T23:58:51.004036238Z"}

That log field is exactly what was sent to stdout on the process in question; the stream
field tells us that this was stdout and not stderr; and the precise time that the
Docker daemon received it is provided in the time field. It’s an uncommon format for
logging, but it’s structured rather than just a raw stream, which is beneficial if you
want to do anything with the logs later.

Like a logfile, you can also tail the Docker logs live with docker logs -f:

$ docker logs -f 3c4f916619a5
nginx stderr | 2014/11/20 00:34:56 [notice] 12#0: using the "epoll" ...
nginx stderr | 2014/11/20 00:34:56 [notice] 12#0: nginx/1.0.15
nginx stderr | 2014/11/20 00:34:56 [notice] 12#0: built by gcc 4.4.7 ...
nginx stderr | 2014/11/20 00:34:56 [notice] 12#0: OS: Linux 3.8.0-35-generic
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This looks identical to the usual docker logs, but the client then blocks, waiting on
and displaying any new logs to appear, much like the Linux command line tail -f.

While Docker automatically captures logs for you, it does not also
rotate them. In fact, currently none of the provided packages set up
any log rotation. You’ll need to do that yourself in most cases.
Rather frustratingly, Docker also does not respond to a signal to tell
it to reopen logs. If you send it the standard HUP signal, it will
instead restart all the containers, which is not what you want. The
current best practice for rotation of Docker logs is to have logro
tate use the copytruncate method to copy the logfile and then
truncate it in place. There are open bugs against docker asking for
a better solution.

For low-volume logging, this mechanism is pretty good. Its shortcomings are around
log rotation, access to the logs remotely once they’ve been rotated, and disk space
usage for high-volume logging. For when this isn’t enough—and in production it’s
probably not—Docker also supports configurable logging backends. This is a newer
feature, so the number of available backends is likely to grow quickly. The supported
option that currently works best for running Docker at scale is the option to send
your container logs to syslog directly from Docker. You can specify this on the
Docker command line with the --log-driver=syslog option.

If you change the log driver to anything other than the default
(json-file), then you will no longer be able to use the docker
logs command. It is assumed that you will have another means of
accessing your logs in that case.
Secondly, the Docker daemon itself will now be writing to /dev/log.
This is usually read by the syslog daemon. If that blocks, the log‐
ging will buffer into memory in the Docker process. At the time of
this writing, further work is being done on this feature to mitigate
that effect. As a result of this deficiency, we can’t currently recom‐
mend this solution at scale.

It was a long time from the beginning of the Docker project to when logging by other
than the json-file method was supported. So there are community contributions
with many alternate ways of getting you logging at scale. It should be noted that many
of these mechanisms are also incompatible with docker logs. The most common
solution is to use a method to send your logs directly to syslog. There are several
mechanisms in use:

• Log directly from your application.
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• Have a process manager in your container relay the logs (e.g., systemd, upstart,
supervisor, or runit).

• Run a logging relay in the container that wraps stdout/stderr from the con‐
tainer.

• Relay the Docker JSON logs themselves to syslog from the server.

Logging directly from your application to syslog might make sense, but if you’re run‐
ning any third-party applications, that probably won’t work.

Although controversial in the Docker community, running a process manager in the
container is a reasonably easy way to capture output and direct it to a central logging
service. New Relic released a logging plug-in for supervisor that does exactly that.
This mechanism is nice because there is no additional machinery in the container
other than what you’d already include. You do need Python installed, though.

Spotify has released a simple, statically linked Go relay to handle logging your stderr
and stdout to syslog for one process inside the container. Generally you run this
from the CMD line in the Dockerfile. Because it’s statically compiled, it has no depen‐
dencies, which makes it very flexible.

If you want to have one system to support all your containers, a popular option is 
Logspout, which runs in a separate container, talks to docker, and logs all the con‐
tainers logs to syslog (UDP only). The advantage of this approach is that it does not
preclude docker logs but does require that you set up log rotation. We’ve also seen
the Docker daemon get overwhelmed by applications with massive logging needs,
and this doesn’t overcome that. We currently recommend running a logging mecha‐
nism inside each container either as the process manager or as a logging wrapper. It
has the least drawbacks.

Finally, while you really should be capturing your logs somewhere, there are rare sit‐
uations in which you simply don’t want any logging. You can use the --log-
driver=none switch to turn them off completely.

Monitoring Docker
Running something in production is not a good idea unless you can tell what’s going
on. In the modern world, we monitor everyting and report as many statistics as we
can. Docker supports some nice, basic reporting capabilities via docker stats and 
docker events. We’ll show you those and then look at a community offering from
Google that does some nice graphing output as well.
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Container Stats
In version 1.5.0, Docker added an endpoint for viewing stats of running containers.
The command-line tool can stream from this endpoint and every few seconds report
back on one or more listed containers, giving basic statistics information about what’s
happening. docker stats, like the Linux top command, takes over the current termi‐
nal and updates the same lines on the screen with the current information. It’s hard to
show that in print, so we’ll just give an example, but this updates every few seconds by
default.

$ docker stats e64a279663aa
CONTAINER     CPU %    MEM USAGE/LIMIT       MEM %    NET I/O
e64a279663aa  0.00%    7.227 MiB/987.9 MiB   0.73%    936 B/468 B

Here we can see the container ID (but not the name), the amount of CPU it’s cur‐
rently consuming, the amout of memory it has in use, and the limit of what it’s
allowed to use. The percentage of memory utilized is also provided to make it easier
for the user to quickly determine how much free memory the container has available.
And stats are provided for both in and out network bytes.

These are all of basic interest, but what they provide is not all that exciting. It turns
out, though, that the Docker API provides a lot more information on the stats end‐
point that is shown in the client. We’ve steered away from hitting the API in this book
so far, but in this case the data provided by the API is so much richer that we’ll use
curl to call it and see what our container is doing. It’s nowhere near as nice to read,
but there is a lot more detail. This is a good intro to calling the API yourself as well.

The /stats/ endpoint that we’ll hit on the API will continue to stream stats to us as
long as we keep the connection open. Since as humans we can’t really parse usefully,
we’ll just ask for one line and then use Python to “pretty print” it. In order for this
command to work, you’ll need to have Python installed (version 2.6 or later). If you
don’t and you still want to see the JSON output, you can skip the pipe to Python, but
you’ll get plain, ugly JSON back.

Here we call localhost, but you’ll want to use the hostname of your Docker server.
Port 2375 is usually the right port. Note that we also pass the ID of our container in
the URL we send to curl.

You can usually inspect the contents of the DOCKER_HOST environ‐
ment variable, using something like echo $DOCKER_HOST, to dis‐
cover the hostname or IP address of the Docker server that you are
using.
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It is easiest to run through the following example if you are running Docker on a full
Linux distribution, with the Docker server bound to the default unencrypted port
2375.

First, let’s go ahead and start up a container that you can read stats from:

$ docker run -d ubuntu:latest sleep 1000
91c86ec7b33f37da9917d2f67177ebfaa3a95a78796e33139e1b7561dc4f244a

Now that the container is running, we can get an ongoing stream of statistics infor‐
mation about the container in JSON format by running something like curl with
your container’s hash.

$ curl -s http://localhost:2375/v1/containers/91c8...244a/stats

This JSON stream of statistics will not stop on its own. So for now,
we can use the Ctrl-C key combination to stop it.

To get a single group of statistics, we can run something similar to this:

$ curl -s http://localhost:2375/v1/containers/91c8...244a/stats | head -1

And finally, if we have Python or another tool capable of “pretty printing” JSON, we
can make this output human-readable, as shown here:

$ curl -s http://localhost:2375/v1/containers/91c8...244a/stats \
| head -1 | python -m json.tool
{
    "blkio_stats": {
        "io_merged_recursive": [],
        "io_queue_recursive": [],
        "io_service_bytes_recursive": [
            {
                "major": 8,
                "minor": 0,
                "op": "Read",
                "value": 6098944
            },
...snip...
        ],
        "io_service_time_recursive": [],
        "io_serviced_recursive": [
            {
                "major": 8,
                "minor": 0,
                "op": "Read",
                "value": 213
            },
...snip...
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        ],
        "io_time_recursive": [],
        "io_wait_time_recursive": [],
        "sectors_recursive": []
    },
    "cpu_stats": {
        "cpu_usage": {
            "percpu_usage": [
                37320425
            ],
            "total_usage": 37320425,
            "usage_in_kernelmode": 20000000,
            "usage_in_usermode": 0
        },
        "system_cpu_usage": 1884140000000,
        "throttling_data": {
            "periods": 0,
            "throttled_periods": 0,
            "throttled_time": 0
        }
    },
    "memory_stats": {
        "failcnt": 0,
        "limit": 1035853824,
        "max_usage": 7577600,
        "stats": {
            "active_anon": 1368064,
            "active_file": 221184,
            "cache": 6148096,
            "hierarchical_memory_limit": 9223372036854775807,
            "inactive_anon": 24576,
            "inactive_file": 5890048,
            "mapped_file": 2215936,
            "pgfault": 2601,
            "pgmajfault": 46,
            "pgpgin": 2222,
            "pgpgout": 390,
            "rss": 1355776,
            "total_active_anon": 1368064,
            "total_active_file": 221184,
            "total_cache": 6148096,
            "total_inactive_anon": 24576,
            "total_inactive_file": 5890048,
            "total_mapped_file": 2215936,
            "total_pgfault": 2601,
            "total_pgmajfault": 46,
            "total_pgpgin": 2222,
            "total_pgpgout": 390,
            "total_rss": 1355776,
            "total_unevictable": 0,
            "unevictable": 0
        },
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        "usage": 7577600
    },
    "network": {
        "rx_bytes": 936,
        "rx_dropped": 0,
        "rx_errors": 0,
        "rx_packets": 12,
        "tx_bytes": 468,
        "tx_dropped": 0,
        "tx_errors": 0,
        "tx_packets": 6
    },
    "read": "2015-02-11T15:20:22.930379289-08:00"
}

There is a lot of information in there. We won’t spend much time going into the
details, but you can get quite detailed memory usage information, as well as blkio and
CPU usage information. If you are using CPU or memory limits in your containers,
this endpoint is very useful for finding out when you are hitting them.

If you are doing your own monitoring, this is a great endpoint to hit as well. Note that
one drawback is that it’s one endpoint per container, so you can’t get the stats about
all containers from a single call.

Docker Events
The docker daemon internally generates an events stream around the container life
cycle. This is how various parts of the system find out what is going on in other parts.
You can also tap into this stream to see what life cycle events are happening for con‐
tainers on your Docker server. This, as you probably expect by now, is implemented
in the docker CLI tool as another command-line argument. When you run this com‐
mand, it will block and continually stream messages to you. Behind the scenes, this is
a long-lived HTTP request to the Docker API that returns messages in JSON blobs as
they occur. The docker CLI tool decodes them and prints some data to the terminal.

This event stream is useful in monitoring scenarios or in triggering additional
actions, like wanting to be alerted when a job completes. For debugging purposes, it
allows you see when a container died even if Docker restarts it later. Down the road,
this is a place where you might also find yourself directly implementing some tooling
against the API. Here’s how we use it on the command line:

$ docker events
2015-02-18T14:00:39-08:00 1b3295bf300f: (from 0415448f2cc2) die

2015-02-18T14:00:39-08:00 1b3295bf300f: (from 0415448f2cc2) stop

2015-02-18T14:00:42-08:00 1b3295bf300f: (from 0415448f2cc2) start
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In this example, we initiated a stop signal with docker stop, and the events stream
logs this as a “die” message. The “die” message actually marks the beginning of the
shutdown of the container. It doesn’t stop instantaneously. So, following the “die”
message is a “stop” message, which is what Docker says when a container has actually
stopped execution. Docker also helpfully tells us the ID of the image that the con‐
tainer is running on. This can be useful for tying deployments to events, for example,
because a deployment usually involves a new image.

Once the container was completely down, we initiated a docker start to tell it to run
again. Unlike the “die/stop” operations, this is a single command that marks the point
at which the container is actually running. We don’t get a message telling us that
someone explicitly started it. So what happens when we try to start a container that
fails?

2015-02-18T14:03:31-08:00 e64a279663aa: (from e426f6ef897e) die

Note that here the container was actually asked to start, but it failed. Rather than see‐
ing a “start” and a “die,” all we see is a “die.”

If you have a server where containers are not staying up, the docker events stream is
pretty helpful in seeing what’s going on and when. But if you’re not watching it at the
time, Docker very helpfully caches some of the events and you can still get at them for
some time afterward. You can ask it to display events after a time with the --since
option, or before with the --until option. You can also use both to limit the window
to a narrow scope of time when an issue you are investigating may have occurred.
Both options take ISO time formats like those in the previous example (e.g.,
2015-02-18T14:03:31-08:00).

cAdvisor
docker stats and docker events are useful but don’t yet get us graphs to look at.
And graphs are pretty helpful when trying to see trends. Of course, other people have
filled some of this gap. When you begin to explore the options for monitoring
Docker, you will find that many of the major monitoring tools now provide some
functionality to help you improve the visibility into your containers’ performance and
ongoing state.

In addition to the commercial tooling provided by companies like DataDog, Ground‐
Work, and New Relic, there are plenty of options for open source tools like Nagios.

One of the best open source options today comes from Google, which released its
own internal container advisor as an open source project on GitHub, called cAdvisor.
Although cAdvisor can be run outside of Docker, the easiest implementation is to
simply run it as a Docker container.

To install cAdvisor on an Ubuntu-based system, all you need to do is run this code:

96 | Chapter 6: Exploring Dockert

https://github.com/google/cadvisor


$ docker run \
  --volume=/:/rootfs:ro \
  --volume=/var/run:/var/run:rw \
  --volume=/sys:/sys:ro \
  --volume=/var/lib/docker/:/var/lib/docker:ro \
  --publish=8080:8080 \
  --detach=true \
  --name=cadvisor \
  google/cadvisor:latest

Unable to find image 'google/cadvisor:latest' locally
Pulling repository google/cadvisor
f0643dafd7f5: Download complete
...
ba9b663a8908: Download complete
Status: Downloaded newer image for google/cadvisor:latest
f54e6bc0469f60fd74ddf30770039f1a7aa36a5eda6ef5100cddd9ad5fda350b

On RHEL- and CentOS-based systems, you will need to add the
following line to the docker run command shown in ???: --
volume=/cgroup:/cgroup \

One you have done this, you will be able to navigate to your Docker host on port
8080 to see the cAdvisor web interface (i.e., http://172.17.42.10:8080/) and the various
detailed charts it has for the host and individual containers (see Figure 6-1).
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Figure 6-1. cAdvisor CPU graphs

cAdvisor provides a REST API endpoint, which can easily be queried for detailed
information by your monitoring systems:

$ curl http://172.17.42.10:8080/api/v1.3/containers/

{
  "name": "/",
  "subcontainers": [
    {
      "name": "/docker"
    }
  ],
  "spec": {
    "creation_time": "2015-04-05T00:05:40.249999996Z",
    "has_cpu": true,
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    "cpu": {
      "limit": 1024,
      "max_limit": 0,
      "mask": "0-7"
    },
    "has_memory": true,
    "memory": {
      "limit": 18446744073709551615,
      "swap_limit": 18446744073709551615
    },
    "has_network": true,
    "has_filesystem": true,
    "has_diskio": true
  },
  "stats": [
    {
      "timestamp": "2015-04-05T00:26:50.679218419Z",
      "cpu": {
        "usage": {
          "total": 123375166639,
          "per_cpu_usage": [
            41967365270,
            8589893874,
            11289461032,
            14350545587,
            11866977873,
            13414428349,
            12667210966,
            9229283688
          ],
          "user": 22990000000,
          "system": 43890000000
        },
        "load_average": 0
      },
      "diskio": {},
      "memory": {
        "usage": 394575872,
        "working_set": 227770368,
        "container_data": {
          "pgfault": 91617,
          "pgmajfault": 0
        },
        "hierarchical_data": {
          "pgfault": 91617,
          "pgmajfault": 0
        }
      },
      "network": {
        "rx_bytes": 0,
        "rx_packets": 0,
        "rx_errors": 0,
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        "rx_dropped": 0,
        "tx_bytes": 0,
        "tx_packets": 0,
        "tx_errors": 0,
        "tx_dropped": 0
      },
      "filesystem": [
        {
          "device": "/dev/sda1",
          "capacity": 19507089408,
          "usage": 2070806528,
          "reads_completed": 1302,
          "reads_merged": 9,
          "sectors_read": 10706,
          "read_time": 1590,
          "writes_completed": 1283,
          "writes_merged": 1115,
          "sectors_written": 509824,
          "write_time": 4150,
          "io_in_progress": 0,
          "io_time": 590,
          "weighted_io_time": 5670
        }
      ],
      "task_stats": {
        "nr_sleeping": 0,
        "nr_running": 0,
        "nr_stopped": 0,
        "nr_uninterruptible": 0,
        "nr_io_wait": 0
      }
    },
    ...
    }
  ]
}

As you can see, the amount of detail provided here should be sufficient for many of
your graphing and monitoring needs.

Exploration
That gives you all the basics you need to start running containers. It’s probably worth
downloading a container or two from the Docker Hub registry and exploring a bit on
your own to get used to the commands we just learned. There are many other things
you can do with Docker, including:

• Copying files in and out of the container with docker cp
• Saving a container’s filesystem to a tarball with docker export
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• Saving an image to a tarball with docker save
• Loading an image from a tarball with docker import

Docker has a huge feature set that you will likely grow into over time. Each new
release adds more functionality as well. We’ll get into a lot more detail later on many
other commands and features, but you should keep in mind that Docker’s whole fea‐
ture set is huge.
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CHAPTER 7

The Path to Production Containers

In this chapter, we cover some of the ideas around deploying and testing containers
in production. This chapter is intended to show you how you might take containers
to production based on our experience doing so. There are a myriad of ways in which
you will probably need to tailor this to your own application and environment. The
purpose of this chapter is really to provide a starting point and to help you under‐
stand the Docker philosophy in practical terms.

Deploying
Deployment, which is often the most mine-ridden of the steps in getting to produc‐
tion, is made vastly simpler by the shipping container model. If you can imagine what
it was once like to load goods into a ship to take across the ocean before shipping
containers existed, you can get a sense of what most deployment systems look like. In
that old shipping model, random-sized boxes, crates, barrels, and all manner of other
packaging were all loaded by hand onto ships. They then had to be manually unloa‐
ded by someone who could tell which pieces needed to be unloaded first so that the
whole pile wouldn’t collapse like a Jenga puzzle.

Shipping containers changed all that: we have a standardized box with well-known
dimensions. These containers can be packed and unloaded in a logical order and
whole groups of items arrive together when expected. This is the Docker deployment
model. All Docker containers support the same external interface, and the tooling
just drops them on the servers they are supposed to be on without any concern for
what’s inside.

Now that we have a running build of our application, we don’t have to write much
custom tooling to kick off deployment. If we only want to ship it to one server, the
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docker command-line tooling will handle most of that for us. If we want to send it to
more, then we might look to some community tooling.

There is a progression you will follow while getting your applications to production
on Docker:

1. Locally build and test a Docker image on your development box.
2. Build your official image for testing and deployment.
3. Deploy your Docker image to your server.

As your workflow evolves, you will eventually collapse all of those steps into a single
fluid workflow:

1. Orchestrate the deployment of images and creation of containers on production
servers.

We talked about some of those steps already, but it is worthwhile to look at them
again to see where deployment fits into the life cycle of getting Docker up and run‐
ning.

If you don’t already have an application to ship, you don’t need to spend too much
time on deployment. But it’s good to know ahead of time what you’ll encounter when
you do get there, so let’s look at how that is done.

Classes of Tooling
Deployment by hand is the simplest, but often the least reliable, way to get an applica‐
tion into production. You can just take your image and docker pull and docker run 
it on the servers in question. That may be good enough for testing and development.
But for production, you will want something more robust.

At the most basic level, a deployment story must encompass two things:

1. It must be a repeatable process. Each time you invoke it, it needs to do the same
thing.

2. It needs to handle container configuration for you. You must be able to define
your application’s configuration in a particular environment and then guarantee
that it will ship that configuration for each container on each deployment.

The Docker client itself can only talk to one server, so you need some kind of orches‐
tration tool to support deployment at any scale. Docker’s Swarm tool, which we talk
about in “Docker Swarm” on page 126, solves the problem of talking to multiple
servers, but you would still need additional tools to support items one and two above.
You could script that behavior with shell scripting or your favorite dynamic language.
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As we mentioned earlier, you could also talk directly to the Docker Remote API,
which is the API exposed by the docker daemon. If you have complicated needs, the
Remote API might be the right solution since it exposes much of the power of the
docker command line in a programmatically accessible way.

But for most people, there are already a large number of community contributions
that can address your needs. These are already being used in production environ‐
ments in many cases and thus are far more battle-hardened than anything you’ll cook
up in-house. There are really two classes of community tooling for deployment:

1. Tools that treat this as an orchestration or deployment problem, replacing things
like Capistrano, Fabric, and shell scripts.

2. Tools that treat your network like a larger computer, implementing automatic
scheduling and/or fleet management policies, typically replacing manual pro‐
cesses.

Orchestration Tools
We’ll call the first set of tools “orchestration tools” because they allow you to coordi‐
nate the configuration and deployment of your application onto multiple Docker dae‐
mons in a more or less synchronous fashion. You tell them what to do, then they do it
at scale while you wait, much like the deployment model of Capistrano, for example.
These tools generally provide the simplest way to get into production with Docker.

In this category are tools like:

• New Relic’s Centurion
• Spotify’s Helios
• Ansible’s Docker tooling

This class of tools in many cases requires the least infrastructure or modification to
your existing system. Setup time is pretty minimal and the standardized nature of the
Docker interface means that a lot of functionality is already packed into the tooling.
You can get important processes like zero-down-time deployment right out of the
box.

The first two concentrate on orchestration of the application and Docker alone, while
Ansible is also a system-configuration management platform and so can also config‐
ure and manage your servers if you wish. Centurion and Ansible require no external
resources other than a docker-registry. Helios requires an Apache Zookeeper cluster.
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Distributed Schedulers
The second set of tools looks at Docker as a way to turn your network into a single
computer by using a distributed scheduler. The idea here is that you define some pol‐
icies about how you want your application to run and you let the system figure out
where to run it and how many instances of it to run. If something goes wrong on a
server or with the application, you let the scheduler start it up again on resources that
are healthy. This fits more into Solomon’s original vision for Docker: a way to run
your application anywhere without worrying about how it gets there. Generally, zero
downtime deployment in this model is done in the blue-green style where you launch
the new generation of an application alongside the old generation, and then slowly
filter new work to the new generation.

Probably the first publicly available tool in this arena is Fleet from CoreOS, which
works with systemd on the hosts to act as a distributed init system. It is by far the
easiest to use on CoreOS, CentOS/RHEL 7, or any version of Linux with systemd. It
requires etcd for coordination, and also needs SSH access to all of your Docker
servers.

The tool in this category with the most press right now is Google’s Kubernetes. It
makes fewer assumptions about your OS distribution than Fleet and therefore runs
on more OS and provider options. It does, however, require that your hosts be set up
in a very specific way and has a whole network layer of its own. If your data center
happens to have its networks laid out like Google’s, you can skip the network overlay.
If not, you must run Flannel, an IP-over-UDP layer that sits on top of your real net‐
work. Like Fleet, it requires etcd. It supports a number of backends, everything from
the Docker daemon, to Google Compute Engine, Rackspace, and Azure. It’s a power‐
ful system with a good API and growing community support.

Apache Mesos, which was originally written at the University of California, Berkeley,
and most publicly adopted by Twitter and Airbnb, is the most mature option. At
DockerCon EU in December 2014, Solomon described Mesos as the gold standard
for clustered containers. Mesos is a framework abstraction that lets you run multiple
frameworks on the same cluster of hosts. You can, for example, run Docker applica‐
tions and Hadoop jobs on the same compute cluster. Mesos uses Zookeeper and has
been around for much longer than most of the other options because it actually pre‐
dates Docker. First-class support for Docker appeared in recent versions of Mesos.
Some of the popular Mesos frameworks like Marathon and Aurora have good sup‐
port for Docker. It’s arguably the most powerful Docker platform right now, but
requires more decisions to implement than Kubernetes. Work is in progress to allow
Kubernetes to run as a Mesos framework as well.

A deep dive into Mesos is out of the scope of this book. But when you are ready for
serious at-scale deployment, this is where you should look. It’s an impressive and very
mature technology that has been used at scale by a number of high-profile organiza‐
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tions. Mesosphere’s Marathon framework and the Apache Aurora project are two
frameworks actively engaging with the Docker community.

In December 2014, Docker, Inc., announced the beta release of a Docker native clus‐
tering tool called Swarm, which presents a large collection of Docker hosts as a single
resource pool. It’s a lightweight clustering tool with a narrower scope than Kubernetes
or Mesos. It can, in fact, work on top of other tools as needed. But it’s reasonably
powerful: a single Docker Swarm container can be used to create and coordinate the
deployments of containers across a large Docker cluster. We will take a deeper dive
into this tool in “Docker Swarm” on page 126.

If you are interested in diving deeper into orchestration and dis‐
tributed schedulers for Docker, consider reading the Docker Cook‐
book by Sébastien Goasguen.

Deployment Wrap-Up
Many people will start by using simple Docker orchestration tools. However, as the
number of containers and frequency with which you deploy containers grow, the
appeal of distributed schedulers will quickly become apparent. Tools like Mesos allow
you to abstract individual servers and whole data centers into large pools of resources
in which to run container-based tasks.

There are undoubtedly many other worthy projects out there in the deployment
space. But these are the most commonly cited and have the most publicly available
information at the time of this writing. It’s a fast-evolving space, so it’s worth taking a
look around to see what new tools are being shipped.

In any case, you should start by getting a Docker infrastructure up and running and
then look at outside tooling. Docker’s built-in tooling might be enough for you. We
suggest using the lightest weight tool for the job, but having flexibility is a great place
to be, and Docker is increasingly supported by more and more powerful tooling.

Testing Containers
One of the key promises of Docker is the ability to test your application and all of its
dependencies in exactly the operating environment it would have in production. It
can’t guarantee that you have properly tested external dependencies like databases,
nor does it provide any magical test framework, but it can make sure that your libra‐
ries and other code dependencies are all tested together. Changing underlying depen‐
dencies is a critical place where things go wrong, even for organizations with strong
testing discipline. With Docker, you can build your image, run it in on your develop‐
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ment box, and then test the exact same image with the same application version and
dependencies before shipping it to production servers.

Testing your Dockerized application is not really much more complicated than test‐
ing your application itself, but you need to make sure that your test environment has
a Docker server you can run things on and that your application will allow you to use
environment variables or command-line arguments to switch on the correct testing
behavior. Here’s one example of how you might do this.

Quick Overview
Let’s draw up an example production environment for a fictional company. We’ll try
to describe something that is similar to the environment at a lot of companies, with
Docker thrown into the mix for illustration purposes.

Our fictional company’s environment has a pool of production servers that run
Docker daemons, and an assortment of applications deployed there. There is a build
server and test worker boxes that are tied to the test server. We’ll ignore deployment
for now and talk about it once we have our fictional application tested and ready to
ship.

Figure 7-1 shows what a common workflow looks like for testing Dockerized applica‐
tions, including the following steps:

1. A build is triggered by some outside means.
2. The build server kicks off a Docker build.
3. The image is created on the local docker.
4. The image is tagged with a build number or commit hash.
5. A container is configured to run the test suite based on the newly built image.
6. The test suite is run against the container and the result is captured by the build

server.
7. The build is marked as passing or failing.
8. Passed builds are shipped to an image store (registry, etc.).

You’ll notice that this isn’t too different from common patterns for testing applica‐
tions. At a minimum you need to have a job that can kick off a test suite. The steps
we’re adding here are just to create a Docker image first and invoke the test suite
inside the container rather than on the raw system itself.
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Figure 7-1. Docker testing workflow chart

Let’s look at how this works for the application we’re deploying at our fictional com‐
pany. We just updated our application and pushed the latest code to our git reposi‐
tory. We have a post-commit hook that triggers a build on each commit, so that job is
kicked off on the build server. The job on the test server is set up to talk to a docker
on a particular test worker server. Our test server doesn’t have docker running, but it
has the docker command-line tool installed. So we run our docker build against
that remote Docker server and it runs our Dockerfile, generating a new image on the
remote Docker server. We could run docker on the test server itself if we had a
smaller environment.

You should build your container image exactly as you’ll ship it to
production. If you need to make concessions for testing, they
should be externally provided switches, either via environment
variables or through command-line arguments. The whole idea is
to test the exact build that you’ll ship, so this is a critical point.

Once the image has been built, our test job will create and run a new container based
on our new production image. Our image is configured to run the application in pro‐
duction, but we need to run a different command for testing. That’s OK! Docker lets
us do that simply by providing the command at the end of the docker run command.
In production, we’d start supervisor and it would start up an nginx instance and
some Ruby unicorn web server instances behind that. But for testing, we don’t need
that nginx and we don’t need to run our web application. Instead, our build job
invokes the container like this:
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$ docker run -e ENVIRONMENT=testing -e API_KEY=12345 \
  -i -t awesome_app:version1 /opt/awesome_app/test.sh

We called docker run, but we did a couple of extra things here, too. We passed a cou‐
ple of environment variables into the container: ENVIRONMENT and API_KEY. These can
either be new or overrides for the ones Docker already exports for us. We also asked
for a particular tag; in this case, version1. That will make sure we build on top of the
correct image even if another build is running simultaneously. Then we override the
command that our container was configured to start in the Dockerfile’s CMD line.
Instead, we call our test script, /opt/awesome_app/test.sh.

Always pass the exact Docker tag for your image into the test job. If
you always use latest, then you won’t be able to guarantee that
another job has not moved that tag just after your build was kicked
off. If you use the exact tag, you can be sure you’re testing the right
version of the application.

A critical point to make here is that docker run will not exit with the exit status of
the command that was invoked in the container. That means we can’t just look at the
exit status to see if our tests were successful. One way to handle this is to capture all of
the output of the test run into a file and then look at the last line of the file to see if it
resulted in success. Our fictional build system does just that. We write out the output
from the test suite and our test.sh echoes either “Result: SUCCESS!” or “Result:
FAILURE!” on the last line to signify if our tests passed.

Be sure to look for some output string that won’t appear by hap‐
penstance in your normal test suite output. If we need to look for
“success,” for example, we had best limit it to looking at the last line
of the file, and maybe also anchored to the beginning of the line.

In this case, we look at just the last line of the file and find our success string, so we
mark the build as passed. There is one more Docker-specific step. We want to take
our passed build and push that image to our registry. The registry is the interchange
point between builds and deployments. It also allows us to share the image with other
builds that might be stacked on top of it. But for now, let’s just think of it as the place
where we put and tag successful builds. Our build script will now do a docker tag to
give the image the right build tag(s), including latest, and then a docker push to
push the build to the registry.

That’s it! As you can see, there is not much to this compared with testing a normal
application. We take advantage of the client/server model of Docker to invoke the test
on a different server from the test master server, and we have to wrap up our test out‐
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put in a shell script to generate our output status. But other than that, it’s a lot like a
common build system anywhere.

But, critically, our fictional company’s system makes sure they only ship applications
whose test suite has passed on the same Linux distribution, with the same libraries
and the same exact build settings. That doesn’t guarantee success, but it gets them a
lot closer to that guarantee than the dependency roulette often experienced by pro‐
duction deployment systems.

If you use Jenkins for continuous integration or are looking for a
good way to test scaling Docker, there are many plug-ins for
Docker, Mesos, and Kubernetes that are worth investigating.

Outside Dependencies
But what about those external dependencies we glossed over? Things like the data‐
base, or Memcache or Redis instances that we need to run our tests against our con‐
tainer? If our fictional company’s application needs a database to run, or a Memcache
or Redis instance, we need to solve that external dependency to have a clean test envi‐
ronment. It would be nice to use the container model to support that dependency.
With some work, you can do this with tools like Docker Compose. Our build job
could express some dependencies between containers, and then Compose will use
Docker’s link mechanism to connect them together. Linking is a mechanism where
Docker exposes environment variables into a container to let you connect containers
when you have more than one deployed to the same host. It can also add information
to the /etc/hosts file inside the container, enabling visibility between them.

Because Docker’s link mechanism is limited to working on a single host, Compose is
best for things like development and testing rather than production. But it has an
expressive config syntax that’s easy to understand and is great for this kind of testing.
If you are interested in linking, Compose is your best option.

Even though containers are normally designed to be disposable, you may still find
that standard testing is not always sufficient to avoid all problems and that you will
want some tools for debuging running containers. In the next chapter, we will discuss
some of the techniques that you can use to get information from your containers that
will help diagnose problems that might crop up in production.
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CHAPTER 8

Debugging Containers

Once you’ve shipped an application to production, there will come a day when it’s not
working as expected. It’s always nice to know ahead of time what to expect when that
day comes. Debugging a containerized application is not all that different from
debugging a normal process on a system.

First, we’ll cover one of the easiest ways to see what’s going on inside your containers.
By using the docker top command, you can see the process list as your container
understands it. It is also critical to understand that your application is not running in
a separate system from the other Docker processes. They share a kernel, likely a file‐
system, and depending on your container configuration, they may share network
interfaces. That means you can get a lot of information about what your container is
doing.

If you’re used to debugging applications in a virtual machine environment, you might
think you would need to enter the container to inspect in detail an application’s mem‐
ory or CPU use, or debug system calls. Not so! Despite feeling in many ways like a
virtualization layer, processes in containers are just processes on the Docker host
itself. If you want to see a process list across all of the Docker containers on a
machine, you can just run ps with your favorite command-line options right on the
server, for example. Let’s look at some things you can do when debugging a contain‐
erized application.

Process Output
Docker has a built-in command for showing what’s running inside a container:
docker top <containerID>. This is nice because it works even from remote hosts as
it’s exposed over the Docker Remote API. This isn’t the only way to see what’s going
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on inside a container, but it’s the easiest to use. Let’s take a look at how that works
here:

$ docker ps
CONTAINER ID   IMAGE        COMMAND    ...  NAMES
106ead0d55af   test:latest  /bin/bash  ...  clever_hypatia

$ docker top 106ead0d55af
UID        PID    PPID    C  STIME  TTY TIME     CMD
root       4548   1033    0  13:29  ?   00:00:00 /bin/sh -c nginx
root       4592   4548    0  13:29  ?   00:00:00 nginx: master process nginx
www-data   4593   4592    0  13:29  ?   00:00:00 nginx: worker process
www-data   4594   4592    0  13:29  ?   00:00:00 nginx: worker process
www-data   4595   4592    0  13:29  ?   00:00:00 nginx: worker process
www-data   4596   4592    0  13:29  ?   00:00:00 nginx: worker process

We need to know the ID of our container, which we get from docker ps. We then
pass that to docker top and get a nice listing of what’s running in our container,
ordered by PID just as we’d expect from Linux ps output.

Some oddities exist here, though. The primary one of these is namespacing of user
IDs and filesystems.

For example, a user might exist in a container’s /etc/passwd that does not exist on the
host machine. In the case where that user is running a process in a container, the ps
output on the host machine will show a numeric ID rather than a user name. In some
cases, two containers might have users squatting on the same numeric ID, or map‐
ping to an ID that is a completely different user on the host system.

For example, if you had a production Docker server using CentOS 7 and ran the fol‐
lowing commands, you would see that UID 7 is named halt:

$ id 7
uid=7(halt) gid=0(root) groups=0(root)

Don’t read too much into the UID number we are using here. It
was chosen simply because it is used by default on both platforms
but represents a different username.

If we then enter the standard Ubuntu container on that Docker host, you will see that
UID 7 is set to lp in /etc/passwd. By running the following commands, you can see
that the container has a completely different perspective of who UID 7 is:

$ docker run -ti ubuntu:latest /bin/bash
root@f86f8e528b92:/# grep x:7: /etc/passwd
lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin
root@f86f8e528b92:/# id lp
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uid=7(lp) gid=7(lp) groups=7(lp)
root@409c2a8216b1:/# exit

If we then run ps au on the Docker host while that container is running as UID 7 (-u
7), we would see that the Docker host would show the container process as being run
by halt instead of lp:

$ docker run -d -u 7 ubuntu:latest sleep 1000
5525...06c6
$ ps ua | grep sleep
 1185 halt     sleep 1000
 1192 root     grep sleep

This could be particulary confusing if a well-known user like nagios or postgres
were configured on the host system but not in the container, yet the container ran its
process with the same ID. This namespacing can make the ps output look quite
strange. It might, for example, look like the nagios user on your Docker host is run‐
ning the postgresql daemon that was launched inside a container, if you don’t pay
close attention.

One solution to this is to dedicate a nonzero UID to your contain‐
ers. On your Docker hosts, you can create a container user as UID
5000 and then create the same user in your base container images.
If you then run all your containers as UID 5000 (-u 5000), you will
not only improve the security of your system by not running con‐
tainer processes as UID 0, but you will also make the ps output on
the Docker host easier to decipher by displaying the container
user for all of your running container processes.

Likewise, because the process has a different view of the filesystem, paths that are
shown in the ps output are relative to the container and not the host. In these cases,
knowing it is in a container is a big win.

So that’s how you use the Docker tooling to look at what’s running in a container. But
that’s not the only way, and in a debugging situation, it might not be the best way. If
you hop onto a Docker server and run a normal Linux ps to look at what’s running,
you get a full list of everything containerized and not containerized just as if they
were all equivalent processes. There are some ways to look at the process output to
make things a lot clearer. Debugging can be facilitated by looking at the Linux ps
output in tree form so that you can see all of the processes descended from Docker.
Here’s what that can look like using the BSD command-line flags. We’ll chop the out‐
put to just the part we care about:

$ ps axlfww
 ... /usr/bin/docker -d
 ...  \_ docker-proxy -proto tcp -host-ip 0.0.0.0 -host-port 6379 ...
 ...  \_ redis-server *:6379
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 ...  \_ docker-proxy -proto tcp -host-ip 0.0.0.0 -host-port 27017 ...
 ...  \_ mongod

Many of the ps commands in the preceding example work only on
true Linux distributions. Boot2Docker is based on busybox, which
provides a stripped-down ps command.

Here you can see that we’re running one Docker daemon and two instances of the
docker-proxy, which we will discuss in more detail in “Network Inspection” on page
119. Everything else under those processes represents Docker containers. In this
example, we have two containers. They show up as top-level processes under docker.
In this case, we are running one Redis server in a container, and one MongoDB
server in another container. Each container has a related docker-proxy process that is
used to map the required network ports between the container and the host Docker
server. It’s pretty clear how they are related to each other, and we know they’re run‐
ning in a container because they are in docker’s process tree. If you’re a bigger fan of
Unix SysV command-line flags, you can get a similar, but not as nice looking, tree
output with ps -ejH:

$ ps -ejH
40643 ...   docker
43689 ...     docker
43697 ...     docker
43702 ...     start
43716 ...       java
46970 ...     docker
46976 ...     supervisord
46990 ...       supervisor_remo
46991 ...       supervisor_stdo
46992 ...       nginx
47030 ...         nginx
47031 ...         nginx
47032 ...         nginx
47033 ...         nginx
46993 ...       ruby
47041 ...         ruby
47044 ...         ruby

You can get a more concise view of the docker process tree by using the pstree com‐
mand. Here, we’ll use pidof to scope it to the tree belonging to docker:

$ pstree `pidof docker`
docker─┬─2*[docker───6*[{docker}]]
       ├─mongod───10*[{mongod}]
       ├─redis-server───2*[{redis-server}]
       └─18*[{docker}]
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This doesn’t show us PIDs and therefore is only useful for getting a sense of how
things hang together in our containers. But this is pretty nice output when there are a
lot of containers running on a host. It’s far more concise and provides a nice high-
level map of how things connect. Here we can see the same containers that were
shown in the ps output above, but the tree is collapsed so we get multipliers like 10*
when there are 10 duplicate processes.

We can actually get a full tree with PIDs if we run pstree, as shown here:

$ pstree -p `pidof docker`
docker(4086)─┬─docker(6529)─┬─{docker}(6530)
             │              ├─...
             │              └─{docker}(6535)
             ├─...
             ├─mongod(6675)─┬─{mongod}(6737)
             │              ├─...
             │              └─{mongod}(6756)
             ├─redis-server(6537)─┬─{redis-server}(6576)
             │                    └─{redis-server}(6577)
             ├─{docker}(4089)
             ├─...
             └─{docker}(6738)

This output provides us with a very good look at all the processes attached to Docker
and what they are running. It is, however, difficult to see the docker-proxy in this
output, since it is really just another forked docker process.

Process Inspection
If you’re logged in to the Docker server, you can inspect running processes in many
of the same ways that you would on the host. Common debugging tools like strace
work as expected. In the following code, we’ll inspect a unicor process running inside
a Ruby webapp container:

$ strace -p 31292
Process 31292 attached - interrupt to quit
select(11, [10], NULL, [7 8], {30, 103848}) = 1 (in [10], left {29, 176592})
fcntl(10, F_GETFL)                      = 0x802 (flags O_RDWR|O_NONBLOCK)
accept4(10, 0x7fff25c17b40, [128], SOCK_CLOEXEC) = -1 EAGAIN (...)
getppid()                               = 17
select(11, [10], NULL, [7 8], {45, 0})  = 1 (in [10], left {44, 762499})
fcntl(10, F_GETFL)                      = 0x802 (flags O_RDWR|O_NONBLOCK)
accept4(10, 0x7fff25c17b40, [128], SOCK_CLOEXEC) = -1 EAGAIN (...)
getppid()                               = 17

You can see that we get the same output that we would from noncontainerized pro‐
cesses on the host. Likewise, an lsof shows us that the files and sockets that a process
has open work as expected:
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$ lsof -p 31292
COMMAND ...  NAME
ruby    ...  /data/app
ruby    ...  /
ruby    ...  /usr/local/rbenv/versions/2.1.1/bin/ruby
ruby    ...  /usr/.../iso_8859_1.so (stat: No such file or directory)
ruby    ...  /usr/.../fiber.so (stat: No such file or directory)
ruby    ...  /usr/.../cparse.so (stat: No such file or directory)
ruby    ...  /usr/.../libsasl2.so.2.0.23 (path dev=253,0, inode=1443531)
ruby    ...  /lib64/libnspr4.so (path dev=253,0, inode=655717)
ruby    ...  /lib64/libplc4.so (path dev=253,0, inode=655718)
ruby    ...  /lib64/libplds4.so (path dev=253,0, inode=655719)
ruby    ...  /usr/lib64/libnssutil3.so (path dev=253,0, inode=1443529)
ruby    ...  /usr/lib64/libnss3.so (path dev=253,0, inode=1444999)
ruby    ...  /usr/lib64/libsmime3.so (path dev=253,0, inode=1445001)
ruby    ...  /usr/lib64/libssl3.so (path dev=253,0, inode=1445002)
ruby    ...  /lib64/liblber-2.4.so.2.5.6 (path dev=253,0, inode=655816)
ruby    ...  /lib64/libldap_r-2.4.so.2.5.6 (path dev=253,0, inode=655820)

Note that the paths to the files are all relative to the container’s view of the backing
filesystem, which is not the same as the host view. Therefore, inspecting the version
of the file on the host will not match the one the container sees. In this case, it’s prob‐
ably best to enter the container to look at the files with the same view that the pro‐
cesses inside it have.

It’s possible to run the GNU debugger (gdb) and other process inspection tools in the
same manner as long as you’re root and have proper permissions to do so.

Controlling Processes
When you have a shell directly on the Docker server, you can treat containerized pro‐
cesses just like any other process running on the system. If you’re remote, you might
send signals with docker kill because it’s expedient. But if you’re already logged in
to a Docker server for a debugging session or because the Docker daemon is not
responding, you can just kill away like you would normally. Note that unless you kill
the top-level process in the container, however, this will not terminate the container
itself. That might be desirable if you were killing a runaway process, but might leave
the container in an unexpected state if developers on remote systems expect that all
the processes are running if they can see their container in docker ps.

These are just normal processes in many respects, and can be passed the whole array
of Unix signals listed in the man page for the Linux kill command. Many Unix pro‐
grams will perform special actions when they receive certain predefined signals. For
example, nginx will reopen its logs when receiving a SIGUSR1 signal. Using the Linux
kill command, it is possible to send any Unix signal to a container process on the
local Docker server.
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We consider it to be a best practice to run some kind of process
control in your production containers. Whether it be systemd,
upstart, runit, supervisor, or your own homegrown tools, this
allows you to treat containers atomically even when they contain
more than one process. You want docker ps to reflect the presence
of the whole container and don’t want to worry if one of the pro‐
cesses inside it has died. If you can assume that the presence of a
container and absence of error logs means that things are working,
it allows you to treat docker ps output as the truth about what’s
happening on your Docker systems. Because containers ship as a
single artifact, this tends to be how people think of them. But you
should only run things that are logically the same application in a
single container.

Network Inspection
Unlike process inspection, debugging containerized applications at the network level
can be more complicated. Unless you are running Docker containers with the host
networking option, which we will discuss in “Networking” on page 171, your con‐
tainers will have their own IP addresses and therefore won’t show up in all netstat
output. Running netstat -an on the Docker server, for example, works as expected,
as shown here:

$ sudo netstat -an
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State
tcp        0      0 10.0.3.1:53             0.0.0.0:*               LISTEN
tcp        0      0 0.0.0.0:22              0.0.0.0:*               LISTEN
tcp6       0      0 :::23235                :::*                    LISTEN
tcp6       0      0 :::2375                 :::*                    LISTEN
tcp6       0      0 :::4243                 :::*                    LISTEN
tcp6       0      0 fe80::389a:46ff:fe92:53 :::*                    LISTEN
tcp6       0      0 :::22                   :::*                    LISTEN
udp        0      0 10.0.3.1:53             0.0.0.0:*
udp        0      0 0.0.0.0:67              0.0.0.0:*
udp        0      0 0.0.0.0:68              0.0.0.0:*
udp6       0      0 fe80::389a:46ff:fe92:53 :::*

Here we can see all of the interfaces that we’re listening on. Our container is bound to
port 23235 on IP address 0.0.0.0. That shows up. But what happens when we ask net
stat to show us the process name that’s bound to the port?

$ netstat -anp
Active Internet connections (servers and established)
Proto ... Local Address           Foreign Address State  PID/Program name
tcp   ... 10.0.3.1:53             0.0.0.0:*       LISTEN 23861/dnsmasq
tcp   ... 0.0.0.0:22              0.0.0.0:*       LISTEN 902/sshd
tcp6  ... :::23235                :::*            LISTEN 24053/docker-proxy

Network Inspection | 119



tcp6  ... :::2375                 :::*            LISTEN 954/docker
tcp6  ... :::4243                 :::*            LISTEN 954/docker
tcp6  ... fe80::389a:46ff:fe92:53 :::*            LISTEN 23861/dnsmasq
tcp6  ... :::22                   :::*            LISTEN 902/sshd
udp   ... 10.0.3.1:53             0.0.0.0:*              23861/dnsmasq
udp   ... 0.0.0.0:67              0.0.0.0:*              23861/dnsmasq
udp   ... 0.0.0.0:68              0.0.0.0:*              880/dhclient3
udp6  ... fe80::389a:46ff:fe92:53 :::*                   23861/dnsmasq

We see the same output, but notice what is bound to the port: docker-proxy. That’s
because Docker actually has a proxy written in Go that sits between all of the contain‐
ers and the outside world. That means that when we look at output, we see only
docker-proxy and that masks which container this is bound to. Luckily, docker ps 
shows us which containers are bound to which ports, so this isn’t a big deal. But it’s
not necessarily expected, and you probably want to be aware of it before you’re
debugging a production failure.

If you’re using host networking in your container, then this layer is skipped. There is
no docker-proxy, and the process in the container can bind to the port directly.

Other network inspection commands work as expected, including tcpdump, but it’s
important to remember that docker-proxy is there, in between the host’s network
interface and the container.

Image History
When you’re building and deploying a single container, it’s easy to keep track of
where it came from and what images it’s sitting on top of. But this rapidly becomes
unmanageable when you’re shipping many containers with images that are built and
maintained by different teams. How can you tell what images are actually underneath
the one your container is running on? docker history does just that. You can see the
image IDs that are layered into the image and the sizes and commands that were used
to build them:

$ docker history centurion-test:latest
IMAGE         CREATED        CREATED BY                              SIZE
ec64a324e9cc  7 months ago   /bin/sh -c #(nop) CMD [/bin/sh -c ngi   0 B
f38017917da1  7 months ago   /bin/sh -c #(nop) EXPOSE map[80/tcp:{   0 B
df0d88d6811a  7 months ago   /bin/sh -c #(nop) ADD dir:617ceac0be1   20.52 kB
b00af4e7a358  11 months ago  /bin/sh -c #(nop) ADD file:76c644211a   518 B
2d4b732ca5cf  11 months ago  /bin/sh -c #(nop) ADD file:7b7ef6cc04   239 B
b6f49406bcf0  11 months ago  /bin/sh -c echo "HTML is working" > /   16 B
f384626619d9  11 months ago  /bin/sh -c mkdir /srv/www               0 B
5c29c073d362  11 months ago  /bin/sh -c apt-get -y install nginx     16.7 MB
d08d285012c8  11 months ago  /bin/sh -c apt-get -y install python-   42.54 MB
340b0525d10f  11 months ago  /bin/sh -c apt-get update               74.51 MB
8e2b3cf3ca53  12 months ago  /bin/bash                               1.384 kB
24ba2ee5d982  13 months ago  /bin/sh -c #(nop) ADD saucy.tar.xz in   144.6 MB
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cc7385a89304  13 months ago  /bin/sh -c #(nop) MAINTAINER Tianon G   0 B
511136ea3c5a  19 months ago                                          0 B

This can be useful, for example, when determining that a container that is having a
problem was actually built on top of the right base image. Perhaps a bug fix was a
applied and the particular container in question didn’t get it because it was still based
on the previous base image. Unfortunately the ADD commands show a hash rather
than the actual files, but they do show whether it was a directory or a file that was
added, which can help you determine which statement in the Dockerfile is being
referred to.

Inspecting a Container
In Chapter 4, we showed you how to read the docker inspect output to see how a
container is configured. But underneath that is a directory on the host’s disk that is
dedicated to the container. Usually this is in /var/lib/docker/containers. If you look at
that directory, it contains very long SHA hashes, as shown here:

$ ls /var/lib/docker
106ead0d55af55bd803334090664e4bc821c76dadf231e1aab7798d1baa19121
28970c706db0f69716af43527ed926acbd82581e1cef5e4e6ff152fce1b79972
3c4f916619a5dfc420396d823b42e8bd30a2f94ab5b0f42f052357a68a67309b
589f2ad301381b7704c9cade7da6b34046ef69ebe3d6929b9bc24785d7488287
959db1611d632dc27a86efcb66f1c6268d948d6f22e81e2a22a57610b5070b4d
a1e15f197ea0996d31f69c332f2b14e18b727e53735133a230d54657ac6aa5dd
bad35aac3f503121abf0e543e697fcade78f0d30124778915764d85fb10303a7
bc8c72c965ebca7db9a2b816188773a5864aa381b81c3073b9d3e52e977c55ba
daa75fb108a33793a3f8fcef7ba65589e124af66bc52c4a070f645fffbbc498e
e2ac800b58c4c72e240b90068402b7d4734a7dd03402ee2bce3248cc6f44d676
e8085ebc102b5f51c13cc5c257acb2274e7f8d1645af7baad0cb6fe8eef36e24
f8e46faa3303d93fc424e289d09b4ffba1fc7782b9878456e0fe11f1f6814e4b

That’s a bit daunting. But those are just the container IDs in long form. If you want to
look at the configuration for a particular container, you just need to use docker ps to
find its short ID, and then find the directory that matches:

$ docker ps
CONTAINER ID        IMAGE                             COMMAND             ...
106ead0d55af        kmatthias/centurion-test:latest   "/bin/sh -c nginx"  ...

You can look at the short ID from docker ps, then match it to the ls /var/lib/
docker output to see that you want the directory beginning with 106ead0d55af. If
you need exact matching, you can do a docker inspect 106ead0d55af and grab the
long ID from the output. As we discussed in Chapter 5, this directory contains some
files that are bind-mounted directly into your container, like hosts:

$ cd /var/lib/docker/\
  containers/106ead0d55af55bd803334090664e4bc821c76dadf231e1aab7798d1baa19121
$ ls -la
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total 32
drwx------  2 root root  4096 Jun 23  2014 .
drwx------ 14 root root 12288 Jan  9 11:33 ..
-rw-------  1 root root     0 Jun 23  2014 106ead0d55a...baa19121-json.log
-rw-r--r--  1 root root  1642 Jan 23 14:36 config.json
-rw-r--r--  1 root root   350 Jan 23 14:36 hostconfig.json
-rw-r--r--  1 root root     8 Jan 23 14:36 hostname
-rw-r--r--  1 root root   169 Jan 23 14:36 hosts

This directory is also where Docker stores the JSON file containing the log that is
shown with the docker logs command, the JSON configuration that backs the
docker inspect output (config.json), and the networking configuration for the con‐
tainer (hostconfig.json) are located.

Even if we’re not able to enter the container, or if docker is not responding, we can
look at how the container was configured. It’s also pretty useful to understand what’s
backing that mechanism inside the container. Keep in mind that it’s not a good idea
to modify these files. Docker expects them to contain reality, and if you alter that real‐
ity, you’re asking for trouble. But it’s another avenue for information on what’s hap‐
pening in your container.

Filesystem Inspection
Docker, regardless of the backend actually in use, has a layered filesystem that allows
it to track the changes in any given container. This is how the images are actually
assembled when you do a build, but it is also useful when trying to figure out if a
Docker container has changed anything, and if so, what. As with most of the core
tools, this is built into the docker command-line tooling and is also exposed via the
API. Let’s take a look at what this shows us in Example 8-1. We’ll assume that we
already have the ID of the container we’re concerned with.

Example 8-1. docker diff

$ sudo docker diff 89b8e19707df
C /var/log/redis
A /var/log/redis/redis.log
C /var/run
A /var/run/cron.reboot
A /var/run/crond.pid
C /var/lib/logrotate.status
C /var/lib/redis
A /var/lib/redis/dump.rdb
C /var/spool/cron
A /var/spool/cron/root

Each line begins with either A or C, which are just shorthand for added or changed.
We can see that this container is running redis, that the redis log is being written to,
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and that someone or something has been changing the crontab for root. Logging to
the local filesystem is not a good idea, especially for anything with high-volume logs.
Being able to find out what is writing to your Docker filesystem can really help you
understand where things are filling up, or give you a preview of what would be added
if you were to build an image from it.

Further detailed inspection requires jumping into the container with docker exec or
nsenter and the like in order to see what is exactly in the filesystem. But docker
diff gives you a good place to start.

Moving Along
At this point, you can deploy and debug containers in your production environment,
but how do you start to scale this for large applications? In the next chapter, we will
expore some of the tools that are avaliable to help you scale Docker inside your data
center and in the cloud.
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CHAPTER 9

Docker at Scale

One of Docker’s major strengths is its ability to abstract away the underlying hard‐
ware and operating system so that your application is not constrained to any particu‐
lar host or environment. It facilitates not just horizontally scaling a stateless
application within your data center, but also across cloud providers without many of
the traditional barriers to similar efforts. True to the shipping container metaphor, a
container on one cloud looks like a container on another.

Many organizations will find cloud deployments of Docker very appealing because
they can gain any of the immediate benefits of a scalable container-based platform
without needing to completely build something in-house. But the barrier is low for
creating your own clusters, and we’ll cover some options for doing that shortly.

It is easy to install Docker on almost any Linux-based cloud instance. However,
Docker and almost every major public cloud provider is actively developing tooling
for intelligently deploying and managing Docker containers across a cluster. At the
time of this writing, many of these projects are usable, but still in the early stages.

If you have your own private cloud, you can leverage a tool like Docker Swarm to
deploy containers easily across a large pool of Docker hosts, or use the community
tool Centurion or Helios to quickly facilitate multi-host deployments. If you have
already experimented with Docker at scale and are looking to build something more
like what the cloud providers themselves offer, then you should consider Kubernetes
or Mesos, which we addressed in the last chapter.

The major public cloud providers have all made efforts to support containers natively
on their offering. Some of the biggest efforts to implement Docker containers on the
public cloud include:

• Amazon EC2 Container Service
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• Google Container Engine
• Red Hat OpenShift 3

Even cloud providers running on non-Linux operating systems like SmartOS and
Windows are actively finding ways to support the Docker ecosystem:

• Joyent Triton
• Microsoft Azure

In this chapter, we’ll cover some options for running Docker at scale in your own data
center, first with a pass through Docker Swarm and Centurion, and then take a dive
into the Amazon EC2 Container Service (Amazon ECS). All of these examples will
hopefully give you a view of how Docker can be succesfully leveraged to provide an
incredibly flexible platform for your application workloads.

Docker Swarm
In early 2015, Docker revamped its six-month-old libswarm project and released the
first beta of the new Swarm tool to the public. The idea behind Swarm is to present a
single interface to the docker client tool but have that interface be backed by a whole
cluster rather than a single Docker daemon. Swarm doesn’t concern itself with appli‐
cation configuration or repeatable deployments; it is aimed at clustering computing
resources for wrangling by the Docker tools. As such, it is a building block of a more
complex solution.

Swarm is implemented as a single Docker container that acts as both the central man‐
agement hub for your Docker cluster and also as the agent that runs on each Docker
host. By deploying it to all of your hosts, you merge them into a single, cohesive clus‐
ter than can be controlled with the Swarm and Docker tooling.

It is actually possible to compile Swarm as a standalone binary that
can be run directly on a host if you prefer not to use the container‐
ized version. But, as with any containerized application, the con‐
tainer is simpler to deploy. Here we’ll cover the containerized
deployment.

Let’s get a Swarm cluster up and running. As with any Docker deployment, the very
first thing we should do is download the Swarm container onto our Docker host by
running a docker pull, as shown here:

$ docker pull swarm
511136ea3c5a: Pull complete
ae115241d78a: Pull complete
f49087514537: Pull complete
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fff73787bd9f: Pull complete
97c8f6e912d7: Pull complete
33f9d1e808cf: Pull complete
62860d7acc87: Pull complete
bf8b6923851d: Pull complete
swarm:latest: The image you are pulling has been verified. Important:
  image verification is a tech preview feature and should not be
  relied on to provide security.
Status: Downloaded newer image for swarm:latest

We now need to create our Docker cluster by running the Swarm container on our
preferred Docker host.

$ docker run --rm swarm create
e480f01dd24432adc551e72faa37bddd

This command returns a hash that represents a unique identifier for your newly cre‐
ated Docker cluster, and is typically referred to as the cluster ID.

Docker Swarm needs to keep track of information about the cluster
it will manage. When invoked, it needs to discover the hosts and
their containers. The default method uses a token and a simple dis‐
covery API located on Docker Hub at discovery.hub.docker.com. But
it also supports other discovery methods, including etcd and Con‐
sul.

To register a Docker host with our cluster, we need to run the Swarm container with
the join argument. In the following command, we need to be sure and provide the
address and port for our Docker host, and the token that we received when we first
created the cluster:

$ docker run -d swarm join --addr=172.17.42.10:2375 \
  token://e480f01dd24432adc551e72faa37bddd
6c0e36c1479b360ac63ec23827560bafcc44695a8cdd82aec8c44af2f2fe6910

The swarm join command launches the Swarm agent on our Docker host and then
returns the full hash to the agent container. If we now run docker ps against our
Docker host we will see the Swarm agent running, and that its short hash matches the
first 12 characters of the full hash that we received from the previous command:

$ docker ps
CONTAINER ID  IMAGE         COMMAND               ...  PORTS      NAMES
6c0e36c1479b  swarm:latest  "/swarm join --addr=  ...  2375/tcp   mad_lalande

At this point, we have a single host cluster. Under normal circum‐
stances, we would want to add additional Docker hosts to the clus‐
ter, and you can do this very easily by starting a second Docker
host using your preferred tool of choice, like docker-machine,
vagrant, etc.
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We now want to deploy the Swarm manager to any one of the Docker hosts in our
cluster:

$ docker run -d -p 9999:2375 swarm manage \
token://87711cac095fe3440f74161d16b4bd94
4829886f68b6ad9bb5021fde3a32f355fad23b91bc45bf145b3f0f2d70f3002b

You can expose the Swarm manager on any port. In this case, we
are using 9999, since 2375 and/or 2376 are already in use on the
Docker host by the Docker server.

If we rerun docker ps, we will now see both Swarm containers running on our
Docker host:

$ docker ps
... IMAGE         COMMAND               ...  PORTS                   ...
... swarm:latest  "/swarm manage token  ...  0.0.0.0:9999->2375/tcp  ...
... swarm:latest  "/swarm join --addr=  ...  2375/tcp                ...

We can list all of the nodes in our cluster by running:

$ docker run --rm swarm list token://87711cac095fe3440f74161d16b4bd94
172.17.42.10:2375

The diagram in Figure 9-1 gives a good overview of the components that make up the
Docker Swarm cluster.

Figure 9-1. Swarm Manager controlling Docker cluster

At this point we can start using docker to interact with our Docker cluster, instead of
with an individual host. Since we don’t have TLS enabled for Swarm, we need to
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ensure that the Docker command doesn’t try to use TLS when connecting to the
Swarm port. We can do this by running the following commands:

Before clearing the following variables, you might want to jot down
their current values so you can reset them when you are done
experimenting with Swarm.

$ echo $DOCKER_HOST; unset DOCKER_HOST
$ echo $DOCKER_TLS_VERIFY; unset DOCKER_TLS_VERIFY
$ echo $DOCKER_TLS; unset DOCKER_TLS
$ echo $DOCKER_CERT_PATH; unset DOCKER_CERT_PATH

By setting the DOCKER_HOST environment variable to the IP address and port that our
Swarm manager is running on, we can now run normal Docker commands against
our Swarm-based Docker cluster, as shown here:

$ export DOCKER_HOST="tcp://172.17.42.10:9999"((("docker", "info")))
$ docker info
Containers: 37
Nodes: 1
 core-01: 172.17.42.10:2375
  └ Containers: 37
  └ Reserved CPUs: 20 / 2
  └ Reserved Memory: 1.367 GiB / 997.9 MiB

The above output from docker info shows some basic details about all of the nodes
in our cluster.

When we are in clustering mode, we can’t use some Docker commands, like docker
pull, but we can still run a new container within our cluster and the agent will take
the required steps, including pulling the image down from the registry.

We can test this by running an nginx container in our new cluster using the following
command:

$ docker run -d nginx
5519a2a379668ceab685a1d73d7692dd0a81ad92a7ef61f0cd54d2c4c95d3f6e

Running docker ps again will now show that we have a container running within the
context of the cluster.

$ docker ps
CONTAINER ID  IMAGE    COMMAND               ...  NAMES
5519a2a37966  nginx:1  "nginx -g 'daemon of  ...  core-01/berserk_hodgkin

An interesting thing to note is that the container name (berserk_hodgkin) is now pre‐
fixed by the name of the node (core-01) that it is running on. If we look back at the
output from docker info, we will see the node name listed there, like this:
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core-01: 172.17.42.10:2375

If we now run docker ps -a, we will see an interesting behavior. In addition to con‐
tainers that are not running, we will also see containers that are running outside the
scope of the cluster (like the swarm containers, themselves) and therefore are
“unknown” to the cluster, although still actually running on one of our hosts.

$ docker ps -a
...  IMAGE         COMMAND               PORTS                        ...
...  nginx:1       "nginx -g 'daemon of  80/tcp, 443/tcp              ...
...  swarm:latest  "/swarm manage token  172.17.42.10:9999->2375/tcp  ...
...  swarm:latest  "/swarm join --addr=  2375/tcp                     ...
...

Although Swarm does not list its own images in standard docker
ps output, it will happily let you docker stop the Swarm manage‐
ment or agent containers, which will, in turn, break things. Don’t
do that.

This covers the basics of using Docker Swarm and should help get you started build‐
ing your own Docker cluster for deployment.

When you are done using Swarm, you will need to reset your
DOCKER_HOST environment variable to point directly at your Docker
host. If your host is using TLS, then you will also need to set
DOCKER_TLS_VERIFY, DOCKER_TLS, and DOCKER_CERT_PATH back to
their previous values.

Centurion
Centurion, which we discussed in Chapter 8, is one of many tools that enables repeat‐
able deployment of applications to a group of hosts. Unlike Swarm, which treats the
cluster as a single machine, you tell Centurion about each host you want it to know
about. Its focus is on guaranteeing repeatability of container creation and simplifying
zero-down-time deployment. It assumes that a load balancer sits in front of your
application instances. It is an easy first step in moving from traditional deployment to
a Docker workflow.

We could equally be covering Spotify’s Helios here, or Ansible’s
Docker tooling, but we believe that Centurion is the simplest of
these tools to get up and running. You are encouraged to see if
there are tools that are a better fit for your deployment needs, but
this section will hopefully give you a taste of what you might ach‐
ieve as a first step.
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Let’s look at deploying a simple application with Centurion. Here we’ll deploy the
public nginx container as our web application. It won’t do much, but will serve up a
welcome page that we can see in a browser. You could easily switch in your custom
application. The only requirement is that it be deployed to a registry.

Before we can deploy, we have to satisfy the dependencies for the tool and get it
installed. Centurion depends on having the Docker command-line tool present and
requires that you have Ruby 1.9 or higher so you’ll want to make sure you have a sys‐
tem with these installed. Centurion can run on Linux or Mac OS X. Windows support
is untested. Packages are available via yum or apt-get on all popular Linux distribu‐
tions. Generally, any distribution with a kernel new enough to run Docker will ship
with packages that meet this requirement. On recent Mac OS X versions, you will
already have the right version of Ruby. If you are on an older release, you can install a
recent Ruby with Homebrew. Most Linux distributions that are capable of running
Docker also ship with a modern enough Ruby to run Centurion. You can check if you
have Ruby installed and if you have a version new enough like this:

$ ruby -v
ruby 2.2.1p85 (2015-02-26 revision 49769) [x86_64-darwin12.0]

Here, we have Ruby 2.2.1, which is plenty new enough. Once you have Ruby running,
install Centurion with the Ruby package manager:

$ gem install centurion
Fetching: logger-colors-1.0.0.gem (100%)
Successfully installed logger-colors-1.0.0
Fetching: centurion-1.5.1.gem (100%)
Successfully installed centurion-1.5.1
Parsing documentation for logger-colors-1.0.0
Installing ri documentation for logger-colors-1.0.0
Parsing documentation for centurion-1.5.1
Installing ri documentation for centurion-1.5.1
Done installing documentation for logger-colors, centurion after 0 seconds
2 gems installed

You can now invoke centurion from the command line to make sure it’s available:

$ centurion --help
Options:
  -p, --project=<s>          project (blog, forums...)
  -e, --environment=<s>      environment (production, staging...)
  -a, --action=<s>           action (deploy, list...) (default: list)
  -i, --image=<s>            image (yourco/project...)
  -t, --tag=<s>              tag (latest...)
  -h, --hosts=<s>            hosts, comma separated
  -d, --docker-path=<s>      path to docker executable (default: docker)
  -n, --no-pull              Skip the pull_image step
  --registry-user=<s>        user for registry auth
  --registry-password=<s>    password for registry auth
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  -o, --override-env=<s>     override environment variables, comma separated
  -l, --help                 Show this message

There are a lot of options there, but right now we’re just making sure that it’s installed
and working. If Centurion is not yet available and you get an error, we can add it to
our path:

$ gempath=`gem environment | grep "INSTALLATION DIRECTORY" | awk '{print $4}'`
$ export PATH=$gempath/bin:$PATH

You should now be able to invoke centurion --help and see the output of the help.

To begin with, we’ll just make a directory in which we’ll store the Centurion configu‐
ration. If this were your own application, this might be the application’s directory, or
it might be a directory in which you store all the deployment configs for all of your
applications. We encourage that pattern for larger installations. Since we’re just going
to deploy the public nginx container, let’s create a directory to house our configs.
Then we’ll change into it and tell Centurion to scaffold a basic config for us with the
centurionize tool:

$ mkdir nginx
$ cd nginx
$ centurionize -p nginx
Creating /Users/someuser/apps/nginx/config/centurion
Writing example config to /Users/someuser/apps/nginx/config/centurion/nginx.rake
Writing new Gemfile to /Users/someuser/apps/nginx/Gemfile
Adding Centurion to the Gemfile

Remember to run `bundle install` before running Centurion

Done!

We can ignore the Gemfile stuff for now and just open the config it generated for us.
You might take a look at it to see what it put in place in order to get an idea of what
Centurion can do. The scaffolded config contains examples of how to use many of the
features of Centurion. We’ll just edit it down to the basics we care about:

namespace :environment do
  desc 'Staging environment'
  task :staging do
    set_current_environment(:staging)
    set :image, 'nginx'

    env_vars MY_ENV_VAR: 'something important'

    host_port 10234, container_port: 80

    host 'docker1'
    host 'docker2'
  end
end
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Centurion supports multiple environments in the same config. Here we’re just going
to deploy to staging. We could add as many as we like. The default file also uses a pat‐
tern where common configurations between environments are put into a common
section that is called by each of the environments. For demonstration purposes, we
cut this config down to a bare minimum.

What we now have is a config that will let us deploy the nginx image from the public
registry to two hosts, docker1 and docker2, while setting the environment variable
MY_ENV_VAR to some text and mapping port 80 inside the container to the public port
10234. It supports any number of environment variables, hosts, ports, or volume
mounts. The idea is to store a repeatable configuration for your application that can
be stamped out onto as many Docker hosts as needed.

Centurion supports a rolling deployment model out of the box for web applications.
It will cycle through a set of hosts, taking one container down at a time to keep the
application up during deployment. It uses a defined health check endpoint on a con‐
tainer to enable rolling deployments. By default, this is “/” and that’s good enough for
us with our simple welcome page application. Nearly all of this is configurable, but
we’ll keep it simple.

We’re ready, so let’s deploy this to staging. We’ll tell Centurion to use the nginx
project, the staging environment, and to do a web application zero-downtime
deployment with rolling_deploy. Centurion will initiate a docker pull on the hosts
in parallel, then on each host in turn it will create a new container, tear down the old
one, and start up the new one. We’ll cut down the very verbose output to get a clearer
idea of the process:

$ centurion -p nginx -e staging -a rolling_deploy
...
I, [2015... #51882]  INFO -- : Fetching image nginx:latest IN PARALLEL
I, [2015... #51882]  INFO -- : Using CLI to pull
I, [2015... #51882]  INFO -- : Using CLI to pull
4f903438061c: Pulling fs layer
1265e16d0c28: Pulling fs layer
0cbe7e43ed7f: Pulling fs layer
...
** Invoke deploy:verify_image (first_time)
** Execute deploy:verify_image
I, [2015... #51882]  INFO -- : ----- Connecting to Docker on docker1 -----
I, [2015... #51882]  INFO -- : Image 224873bd found on docker1
...
I, [2015... #51882]  INFO -- : ----- Connecting to Docker on docker2 -----
I, [2015... #51882]  INFO -- : Image 224873bd found on docker2
...
I, [2015... #51882]  INFO -- : ----- Connecting to Docker on docker1 -----
I, [2015... #51882]  INFO -- : Stopping container(s):
[{"Command"=>"nginx -g 'daemon off;'", "Created"=>1424891086,
"Id"=>"6b77a8dfc18bd6822eb2f9115e0accfd261e99e220f96a6833525e7d6b7ef723",
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"Image"=>"2485b0f89951", "Names"=>["/nginx-63018cc0f9d268"],
"Ports"=>[{"PrivatePort"=>443, "Type"=>"tcp"}, {"IP"=>"172.16.168.179",
"PrivatePort"=>80, "PublicPort"=>10234, "Type"=>"tcp"}],
"Status"=>"Up 5 weeks"}]
I, [2015... #51882]  INFO -- : Stopping old container 6b77a8df
(/nginx-63018cc0f9d268)
I, [2015... #51882]  INFO -- : Creating new container for 224873bd
I, [2015... #51882]  INFO -- : Starting new container 8e84076e
I, [2015... #51882]  INFO -- : Waiting for the port to come up
I, [2015... #51882]  INFO -- : Found container up for 1 seconds
W, [2015... #51882]  WARN -- : Failed to connect to http://docker1:10234/,
no socket open.
I, [2015... #51882]  INFO -- : Waiting 5 seconds to test the / endpoint...
I, [2015... #51882]  INFO -- : Found container up for 6 seconds
I, [2015... #51882]  INFO -- : Container is up!
...
** Execute deploy:cleanup
I, [2015... #51882]  INFO -- : ----- Connecting to Docker on docker1 -----
I, [2015... #51882]  INFO -- : Public port 10234
I, [2015... #51882]  INFO -- : Removing old container e64a2796 (/sad_kirch)
I, [2015... #51882]  INFO -- : ----- Connecting to Docker on docker2 -----
I, [2015... #51882]  INFO -- : Public port 10234
I, [2015... #51882]  INFO -- : Removing old container dfc6a240 (/prickly_morse)

What we see happening here is pulling the requested image, verifying that it pulled
properly, and then connecting to the hosts to stop the old container, create a new one,
start it, and health-check it until it’s up. At the very end, it cleans up the old contain‐
ers so they don’t hang around forever.

Now we have the container up and running on both docker1 and docker2. We can
connect with a web browser by hitting http://docker2:10234 or the same URI on
docker1. In real production, you’ll want a load balancer configured to sit in front of
these hosts and point your clients to either of the instances. There is nothing dynamic
to this setup, but it gets your application deployed with all the basic benefits of
Docker for a minimal investment of time.

That’s all there is to it for a basic setup. Centurion supports a lot more than this, but
you can start to get the sense of the kinds of things some of the community tooling
can support.

This class of tooling is very easy to get started with and will get you to a production
infrastructure quickly. But growing your Docker deployment to a vast scale will likely
involve a distributed scheduler, or one of the cloud providers. In that vein, let’s look at
Amazon’s new service.

Amazon EC2 Container Service
One of the most popular cloud providers is Amazon via their AWS offering. Support
for running containers natively has existed in Elastic Beanstalk since mid-2014. But
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that service assigns only a single container to an Amazon instance, which means that
it’s not ideal for short-lived or lightweight containers. EC2 itself is a great platform for
hosting your own Docker environment, though, and because Docker is powerful, you
don’t necessarily need much on top of your instances to make this a productive envi‐
ronment to work in. But Amazon has spent a lot of engineering time building a ser‐
vice that treats containers as first-class citizens: the EC2 Container Service.

We’re going to cover the EC2 Container Service (ECS) to give you a
taste of where the cloud providers are going so that you can see
what a productionized cloud service could look like. At the time of
this writing, the EC2 Container Service is in preview mode. Any‐
one can request access access to the service, but Amazon is only
slowly adding the service to accounts as it ramps everything up and
ensures a stable experience for its customers.

This section assumes that you have access to an AWS account and some familiarity
with the service. Amazon provides detailed documentation online that covers every‐
thing required to bootstrap an EC2 container install, including signing up for AWS,
creating a user, creating a Virtual Private Cloud (VPC), etc.

The container service offering is an orchestration of several parts. You first define a
cluster, then put one or more EC2 instances running Docker and Amazon’s special
agent into the cluster, and then push containers into the cluster. The agent works with
the ECS service to coordinate your cluster and schedule containers to hosts.

IAM Role Setup
In AWS, Identity and Access Management (IAM) roles are used to control what
actions a user can take within your cloud environment. We need to make sure we can
grant access to the right actions before moving on with the EC2 Container Service.

To work with the EC2 Container Service, you need a role that consists of a policy with
the privileges:

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "ecs:CreateCluster",
        "ecs:RegisterContainerInstance",
        "ecs:DeregisterContainerInstance",
        "ecs:DiscoverPollEndpoint",
        "ecs:Submit*",
        "ecs:Poll"
      ],

Amazon EC2 Container Service | 135

http://amzn.to/1F9dHlG


      "Resource": [
        "*"
      ]
    }
  ]
}

In this example, we are only giving out the specific ecs privileges
that we need for normal interaction with the service. ecs:Crea
teCluster is optional if the cluster you will be registering the EC2
container agent with already exists.

AWS CLI Setup
Amazon supplies comand-line tools that make it easy to work with their API-driven
infrastructure. You will need to install version 1.7 or higher of the AWS Command
Line Interface (CLI) tools. Amazon has detailed documentation that covers installa‐
tion of their tools, but the basic steps are as follows.

Installation

Mac OS X.    In Chapter 3, we discussed installing Homebrew. If you previously did this,
you can install the AWS CLI using the following commands:

$ brew update
$ brew install awscli

Windows.    Amazon provides a standard MSI installer for Windows, which can be
downloaded from Amazon S3 for your architecture:

• 32-Bit Windows
• 64-Bit Windows

Other.    The Amazon CLI tools are written in Python. So on most platforms, you can
install the tools with the Python pip package manager by running the following from
a shell:

$ pip install awscli

Some platforms won’t have pip installed by default. In that case, you can use the
easy_install package manager, like this:

$ easy_install awscli
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Configuration
Quickly verify that your AWS CLI version is at least 1.7.0 with the following com‐
mand:

$ aws --version
aws-cli/1.7.0 Python/2.7.6 Darwin/14.1.0

To quickly configure the AWS CLI tool, ensure that you have access to your AWS
Access Key ID and AWS Secret Access Key, and then run the following. You will be
prompted for your authentication information and some preferred defaults:

$ aws configure
AWS Access Key ID [None]: EXAMPLEEXAMPLEEXAMPLE
AWS Secret Access Key [None]: ExaMPleKEy/7EXAMPL3/EXaMPLeEXAMPLEKEY
Default region name [None]: us-east-1
Default output format [None]: json

You can quickly test that the CLI tools are working correctly by running the following
command to list the IAM users in your account:

$ aws iam list-users

Assuming everything went according to plan and you chose JSON as your default
output format, you should get something like the return shown here:

{
    "Users": [
        {
            "UserName": "myuser",
            "Path": "/",
            "CreateDate": "2015-01-15T18:30:30Z",
            "UserId": "EXAMPLE123EXAMPLEID",
            "Arn": "arn:aws:iam::01234567890:user/myuser"
        }
    ]
}

Container Instances
The first thing you need to do after installing the required tools is to create at least a
single cluster that your Docker hosts will register with when they are brought online.

The default cluster name is imaginatively named “default.” If you
keep this name, you do not need to specify --cluster-name in
many of the commands that follow.
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The first thing we need to do is start a cluster in the container service. We’ll then push
our containers into the cluster once it’s up and running. For these examples, we will
start by creating a cluster called “testing”:

$ aws ecs create-cluster --cluster-name testing
{
    "cluster": {
        "clusterName": "testing",
        "status": "ACTIVE",
        "clusterArn": "arn:aws:ecs:us-east-1:0123456789:cluster/testing"
    }
}

You will now need to create an instance via the Amazon console. You could use your
own AMI with the ECS agent and Docker installed, but Amazon provides one that
we’ll use here. This is almost always the way you’ll want to use it since most of your
custom code will ship in Docker containers anyway, right? So we’ll deploy that AMI
and configure it for use in the cluster. Consult Amazon’s detailed documentation for
this step.

If you are creating a new EC2 instance, be sure and note the IP
address that it is assigned so that you can connect to it later.

As we mentioned, it is also possible to take an existing Docker host within your EC2
environment and make it compatible with the EC2 Container Service. To do this, you
need to connect to the EC2 instance and ensure that you are running Docker version
1.3.3 or greater, and then deploy the Amazon ECS Container Agent to the local
Docker host with the proper environment variable configured for your setup, as
shown here:

$ sudo docker --version
Docker version 1.4.1, build 5bc2ff8

$ sudo docker run --name ecs-agent -d \
-v /var/run/docker.sock:/var/run/docker.sock \
-v /var/log/ecs/:/log -p 127.0.0.1:51678:51678 \
-e ECS_LOGFILE=/log/ecs-agent.log \
-e ECS_LOGLEVEL=info \
-e ECS_CLUSTER=testing \
amazon/amazon-ecs-agent:latest

Once you have at least a single instance running and registered into your cluster, you
can check it by running:

$ aws ecs list-container-instances --cluster testing
{
    "containerInstanceArns": [
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        "arn:aws:ecs:us-east-1:01234567890:
          container-instance/zse12345-12b3-45gf-6789-12ab34cd56ef78"
    ]
}

Taking the UID from the end of the previous command’s output, we can request even
more details about the container instance with the command shown here:

$ aws ecs describe-container-instances --cluster testing \
  --container-instances zse12345-12b3-45gf-6789-12ab34cd56ef78
{
    "failures": [],
    "containerInstances": [
        {
            "status": "ACTIVE",
            "registeredResources": [
                {
                    "integerValue": 1024,
                    "longValue": 0,
                    "type": "INTEGER",
                    "name": "CPU",
                    "doubleValue": 0.0
                },
                {
                    "integerValue": 3768,
                    "longValue": 0,
                    "type": "INTEGER",
                    "name": "MEMORY",
                    "doubleValue": 0.0
                },
                {
                    "name": "PORTS",
                    "longValue": 0,
                    "doubleValue": 0.0,
                    "stringSetValue": [
                        "2376",
                        "22",
                        "51678",
                        "2375"
                    ],
                    "type": "STRINGSET",
                    "integerValue": 0
                }
            ],
            "ec2InstanceId": "i-aa123456",
            "agentConnected": true,
            "containerInstanceArn": "arn:aws:ecs:us-east-1:
              01234567890:container-instance/
              zse12345-12b3-45gf-6789-12ab34cd56ef78",
            "remainingResources": [
                {
                    "integerValue": 1024,
                    "longValue": 0,
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                    "type": "INTEGER",
                    "name": "CPU",
                    "doubleValue": 0.0
                },
                {
                    "integerValue": 3768,
                    "longValue": 0,
                    "type": "INTEGER",
                    "name": "MEMORY",
                    "doubleValue": 0.0
                },
                {
                    "name": "PORTS",
                    "longValue": 0,
                    "doubleValue": 0.0,
                    "stringSetValue": [
                        "2376",
                        "22",
                        "51678",
                        "2375"
                    ],
                    "type": "STRINGSET",
                    "integerValue": 0
                }
            ]
        }
    ]
}

It is interesting to note that the output includes both the container instance’s regis‐
tered resources, as well as its remaining resources. When you have multiple instances,
this information helps the service determine where to deploy containers within the
cluster.

Tasks
Now that our container cluster is up and running, we need to start putting it to work.
To do this, we need to create at least one task definition. The Amazon EC2 Container
Service defines the phrase “task definition” as a list of containers grouped together.

To create your first task definition, open up your favorite editor, copy in the following
JSON, and then save it as starwars-task.json in your home directory, as shown here:

[
  {
    "name": "starwars",
    "image": "rohan/ascii-telnet-server:latest",
    "essential": true,
    "cpu": 50,
    "memory": 128,
    "portMappings": [
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      {
        "containerPort": 23,
        "hostPort": 2323
      }
    ],
    "environment": [
      {
        "name": "FAVORITE_CHARACTER",
        "value": "Boba Fett"
      },
      {
        "name": "FAVORITE_EPISODE",
        "value": "V"
      }
    ],
    "entryPoint": [
      "/usr/bin/python",
      "/root/ascii-telnet-server.py"
    ],
    "command": [
      "-f",
      "/root/sw1.txt"
    ]
  }
]

In this task definition, we are saying that we want to create a task called starwars that
will be based on the Docker image rohan/ascii-telnet-server:latest. This Docker image
launches a Python-based telnet server that serves the Ascii Art version of the movie
Star Wars to anyone who connects.

In addition to typical variables included in a Dockerfile or via the docker run com‐
mand, we define some constraints on memory and CPU usage for the container, in
addition to telling Amazon whether this container is essential to the task. The essen
tial flag is useful when you have multiple containers defined in a task, and not all of
them are required for the task to be successful. If essential is true and the container
fails to start, then all the containers defined in the task will be killed and the task will
be marked as failed.

To upload this task definition to Amazon, we run a command similar to that shown
here:

$ aws ecs register-task-definition --family starwars-telnet \
  --container-definitions file://$HOME/starwars-task.json

{
    "taskDefinition": {
        "taskDefinitionArn": "arn:aws:ecs:us-east-1:
          01234567890:task-definition/starwars-telnet:1",
        "containerDefinitions": [
            {
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                "environment": [
                    {
                        "name": "FAVORITE_EPISODE",
                        "value": "V"
                    },
                    {
                        "name": "FAVORITE_CHARACTER",
                        "value": "Boba Fett"
                    }
                ],
                "name": "starwars",
                "image": "rohan/ascii-telnet-server:latest",
                "cpu": 50,
                "portMappings": [
                    {
                        "containerPort": 23,
                        "hostPort": 2323
                    }
                ],
                "entryPoint": [
                    "/usr/bin/python",
                    "/root/ascii-telnet-server.py"
                ],

                "memory": 128,
                "command": [
                    "-f",
                    "/root/sw1.txt"
                ],
                "essential": true
            }
        ],
        "family": "starwars-telnet",
        "revision": 1
    }
}

We can then list all of our task definitions by running the following:

$ aws ecs list-task-definitions

{
    "taskDefinitionArns": [
        "arn:aws:ecs:us-east-1:01234567890:task-definition/starwars-telnet:1"
    ]
}

Now we are ready to run our first task in our cluster. This is easily achieved with the
command here:

$ aws ecs run-task --cluster testing --task-definition starwars-telnet:1 \
  --count 1
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{
    "failures": [],
    "tasks": [
        {
            "taskArn": "arn:aws:ecs:us-east-1:
              01234567890:task/b64b1d23-bad2-872e-b007-88fd6ExaMPle",
            "overrides": {
                "containerOverrides": [
                    {
                        "name": "starwars"
                    }
                ]
            },
            "lastStatus": "PENDING",
            "containerInstanceArn": "arn:aws:ecs:us-east-1:
              01234567890:container-instance/
              zse12345-12b3-45gf-6789-12ab34cd56ef78",
            "desiredStatus": "RUNNING",
            "taskDefinitionArn": "arn:aws:ecs:us-east-1:
              01234567890:task-definition/starwars-telnet:1",
            "containers": [
                {
                    "containerArn": "arn:aws:ecs:us-east-1:
                      01234567890:container/
                      zse12345-12b3-45gf-6789-12abExamPLE",
                    "taskArn": "arn:aws:ecs:us-east-1:
                      01234567890:task/b64b1d23-bad2-872e-b007-88fd6ExaMPle",
                    "lastStatus": "PENDING",
                    "name": "starwars"
                }
            ]
        }
    ]
}

The count argument allows us to define how many copies of this task we want
deployed into our cluster. For this job, one is enough.

The task-definition value is a name followed by a number
(starwars-telnet:1). The number is the revision. If you edit your
task and re-register it with the aws ecs register-task-

definition command, you will get a new revision, which means
that you will want to reference that new revision in your aws ecs
run-task. If you don’t change that number, you will continue to
launch containers using the older JSON. This verisioning makes it
very easy to roll back changes and test new revisions without
impacting all future instances.
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In the output from the previous command, it is very likely that the lastStatus key
displayed a value of PENDING.

You can now describe that task to ensure that it has transitioned into a RUNNING
state by locating the task Arn from the previous output and then executing the code
shown here:

$ aws ecs describe-tasks --cluster testing \
  --task b64b1d23-bad2-872e-b007-88fd6ExaMPle

{
    "failures": [],
    "tasks": [
        {
            "taskArn": "arn:aws:ecs:us-east-1:
              01234567890:task/b64b1d23-bad2-872e-b007-88fd6ExaMPle",
            "overrides": {
                "containerOverrides": [
                    {
                        "name": "starwars"
                    }
                ]
            },
            "lastStatus": "RUNNING",
            "containerInstanceArn": "arn:aws:ecs:us-east-1:
              017663287629:container-instance/
              zse12345-12b3-45gf-6789-12ab34cd56ef78",
            "desiredStatus": "RUNNING",
            "taskDefinitionArn": "arn:aws:ecs:us-east-1:
              01234567890:task-definition/starwars-telnet:1",
            "containers": [
                {
                    "containerArn": "arn:aws:ecs:us-east-1:
                      01234567890:container/
                      zse12345-12b3-45gf-6789-12abExamPLE",
                    "taskArn": "arn:aws:ecs:us-east-1:
                      01234567890:task/b64b1d23-bad2-872e-b007-88fd6ExaMPle",
                    "lastStatus": "RUNNING",
                    "name": "starwars",
                    "networkBindings": [
                        {
                            "bindIP": "0.0.0.0",
                            "containerPort": 23,
                            "hostPort": 2323
                        }
                    ]
                }
            ]
        }
    ]
}
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After verifying that the lastStatus key is set to RUNNING, we should be able to test
our container.

Testing the Task
You will need either netcat or a telnet client installed on your system to connect to the
container.

Installing NetCat/Telnet

Mac OS X.    Mac OS X ships with a copy of netcat in /usr/bin/nc, but you can also install
it via Homebrew:

$ brew install netcat

In this case, you will find the binary is called netcat rather than nc.

Debian-based system.   
$ sudo apt-get install netcat

RedHat-based systems.   
$ sudo yum install nc

Windows.    Windows comes with a supported telnet client, but it is typically not
installed by default. You can launch an administrative command prompt and type a
single command to install the telnet client.

1. Click Start and under search, type CMD.
2. Right-click CMD and click Run as administrator.
3. If prompted, enter your Administrator password.
4. In the command prompt that launches, type the following command to enable

the telnet client:

$ pkgmgr /iu:"TelnetClient"

Connecting to the container
We can now test the containerized task using either netcat or telnet. Launch a com‐
mand prompt and then run the following commands. Be sure to replace the IP
address with the address assigned to your EC2 instance.

When you connect to the container, you should see an ASCII version of the Star Wars
movie playing on your console.
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netcat.   
$ clear
$ nc 192.168.0.1 2323

To exit, simply press Ctrl-C.

telnet.   
$ clear
$ telnet 192.168.0.1 2323

To exit, press Ctrl-], and in the telnet prompt, type quit, then press Enter.

Stopping the task
We can list all the tasks running in our cluster using the following command:

$ aws ecs list-tasks --cluster testing

{
    "taskArns": [
        "arn:aws:ecs:us-east-1:
          01234567890:task/b64b1d23-bad2-872e-b007-88fd6ExaMPle"
    ]
}

We can further describe the task by reusing the aws ecs describe-tasks command:

$ aws ecs describe-tasks --cluster testing \
  --task b64b1d23-bad2-872e-b007-88fd6ExaMPle

...

Finally, we can stop the task by running:

$ aws ecs stop-task --cluster testing \
  --task b64b1d23-bad2-872e-b007-88fd6ExaMPle

{
...
        "lastStatus": "RUNNING",
...
        "desiredStatus": "STOPPED",
...
}

If we describe the task again, we should now see that the lastStatus key is set to
STOPPED:

$ aws ecs describe-tasks --cluster staging_cluster \
  --task b64b1d23-bad2-872e-b007-88fd6ExaMPle

{
...
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        "lastStatus": "STOPPED",
...
        "desiredStatus": "STOPPED",
...
}

And finally, listing all the tasks in our cluster should return an empty set.

$ aws ecs list-tasks --cluster testing

{
    "taskArns": []
}

At this point, we can start creating more complicated tasks that tie multiple contain‐
ers together and rely on the EC2 Container Service tooling to deploy the tasks to the
most idle hosts in our cluster.

Wrap-Up
After reading this chapter, you should have a good idea of the type of tools you can
use to create a truly dynamic Docker cluster for your applications to live in. With
Docker’s highly portable container format and its ability to abstract away so much of
the underlying Linux system, it is easy to move your applications fluidly between
your data center and as many cloud providers as you want.
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CHAPTER 10

Advanced Topics

In this chapter, we’ll do a quick pass through some of the more advanced topics.
We’re going to assume that you have a pretty good hold on Docker by now and that
you’ve already got it in production or at least you’re a regular user. We’ll talk some
more about deployment tools, networking, orchestration, security, and advanced
configuration.

Some of this chapter covers configurable changes you can make to your Docker
installation. These can be useful. But Docker has good defaults and the defaults are
much better tested and usually more robust than the alternatives. Keep in mind that
this is early production release software and things are moving fast. The defaults have
the most eyeballs on them and therefore have had the largest number of bug fixes.
You should stick to the defaults on your operating system unless you have a good rea‐
son to change them and have educated yourself on what those changes mean to you.

Pluggable Backends
Docker has a very clean external interface and, in part because it’s largely a single
static Go binary, it looks pretty monolithic. But there’s actually a lot going on under
the covers that is configurable, and the two kinds of backends are a good example.
With Docker, you can easily swap both how Docker interacts with the underlying file‐
system and how it talks to the kernel about containers! Those are powerful switches
and you’ll want to know what they do before throwing them. First we’ll talk about
execution drivers, then the filesystem backends.

Execution Drivers
Docker is not the mechanism for talking to the Linux kernel and managing the life
cycle of containers. It seems like it because it knows how to do the right things out of
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the box. But that’s because it ships with a few swappable container engines known as
execution drivers. These are implemented to a standard API and while they have to
be built into Docker at compile time, they are switchable at runtime with a
command-line argument. By default, Docker ships with the “native” driver enabled.
You can change it to the LXC driver (which we’ll explain in a minute) with a simple
command-line argument when you start Docker, like this:

$ docker -d -e lxc

Because it’s so easy to change, it might seem like a small thing. It’s not. Changing your
execution drivers drastically affects how Docker interacts with the kernel and may
introduce additional runtime dependencies to your environment. There is every
chance in the world that you will never change this setting. But it’s worthwhile under‐
standing how this mechanism works and why you might do that.

All distributions that we are familiar with ship with “native” as the default Docker
execution driver. This continues to be where the heaviest development work takes
place. And from Docker 1.5.0 and up, the /stats endpoint on the API, which we
talked about in Chapter 8, is only available on the native execution driver. So let’s find
out what your system is running. You can see what your system is running by using
docker info:

$ docker info
Containers: 18
Images: 286
Storage Driver: aufs
 Root Dir: /var/lib/docker/aufs
 Backing Filesystem: extfs
 Dirs: 323
Execution Driver: native-0.2
Kernel Version: 3.8.0-35-generic
Operating System: Ubuntu precise (12.04.3 LTS)
CPUs: 1
Total Memory: 987.9 MiB
Name: ubuntu
ID: UNKL:ZFZ5:ELSF:DU7Z:WJBM:NVPO:WDUZ:BO53:UFAD:KARC:NSSH:ZA5Q

We’ve shown this before, but hopefully after this chapter you’ll have a better idea of
what that means. This Ubuntu server is running the “native-0.2” execution driver.
The native driver is versioned so that in theory you could compile your Docker
against different versions of libcontainer and have it exercise only the functionality
that’s available in that version of the library. Unless you are building Docker from
source and intentionally changing things, these will always be correctly matched for
you and are therefore nothing to worry about.
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native, lxc, etc.
Until around Docker 0.9, the project leveraged work done by the Linux Containers
Project (LXC) to control container life cycles. This was the one and only execution
driver. A change was made in Docker 0.9 to support a standardized API for execution
drivers with the intention of bringing many other virtualization layers into the fold,
including non-container engines. It was envisioned that things like FreeBSD jails and
Solaris Zones might appear as execution drivers. We haven’t seen that really play out
so far; one of the main draws to Docker is using it to control Linux containers. But
there are still two container-based execution drivers that ship with Docker: the origi‐
nal LXC driver and the “native” driver we saw a moment ago.

Because LXC was not a part of the Docker project, it was hard for Docker to ensure
that the LXC project didn’t introduce changes that caused issues with Docker. It also
made it challenging for Docker to ensure that important changes required in the next
LXC release were prioritized.

As a result, in version 0.9, the LXC execution driver was replaced with libcontainer,
a Docker-native Go library for working with containers, namespaces, and cgroups.
All modern Docker builds use libcontainer as the default backend. But LXC is still
available, and in certain cases it might be a good choice if you were, for example, inte‐
grating with systems that were already using LXC containers prior to Docker’s
release. LXC also provides some much finer-grained control via command-line tools
on the server itself. We showed you how to change the driver to LXC, above. Let’s
take a look at doing that and also some of the gotchas:

$ docker -d -H tcp://0.0.0.0:2375 \
  -H unix:///var/run/docker.sock -e lxc
INFO[0000] +job serveapi(tcp://0.0.0.0:2375, unix:///var/run/docker.sock)
INFO[0000] Listening for HTTP on tcp (0.0.0.0:2375)
INFO[0000] Listening for HTTP on unix (/var/run/docker.sock)
INFO[0000] +job init_networkdriver()
INFO[0000] -job init_networkdriver() = OK (0)
INFO[0000] WARNING: Your kernel does not support cgroup swap limit.
INFO[0000] Loading containers: start.
....................................
INFO[0000] Loading containers: done.
INFO[0000] ... daemon: 1.5.0 a8a31ef; execdriver: lxc-0.7.5; graphdriver: aufs
INFO[0000] +job acceptconnections()
INFO[0000] -job acceptconnections() = OK (0)

This is what the Docker daemon looks like when starting up the LXC backend in the
foreground. Let’s leave that running in the foreground and then switch to another ter‐
minal to run the Docker commands. That way we can see what the daemon shows us.
By restarting Docker to switch backends, we killed off all of our running containers.
Note that even containers that were supposed to start on Docker daemon startup
don’t come back up. We’ll show you why in a minute. But they are still visible even if
created with the “native” backend:
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$ docker ps -a
CONTAINER ID  IMAGE         COMMAND               ... STATUS
e64a279663aa  e426f6ef897e  "nginx -g 'daemon of  ... Exited (0) 1 minutes ago

So what happens when we try to start it back up?

$ docker start e64a279663aa
e64a279663aa

If we look back at the other window, we see the code shown here (shortened to fit the
page):

INFO[0170] POST /v1.17/containers/e64a279663aa/start
INFO[0170] +job start(e64a279663aa)
INFO[0170] +job allocate_interface(e64a279663aabb7)
INFO[0170] -job allocate_interface(e64a279663aabb7) = OK (0)
INFO[0170] +job allocate_port(e64a279663aabb7)
INFO[0170] -job allocate_port(e64a279663aabb7) = OK (0)
INFO[0170] +job log(start, e64a279663aabb7)
INFO[0170] -job log(start, e64a279663aabb7) = OK (0)
INFO[0170] -job start(e64a279663aa) = OK (0)
INFO[0170] +job log(die, e64a279663aabb7)

That’s Docker telling us that it has created interfaces and ports for a container. It sure
looks like it started. We got a container ID back on the command line, and in the log
we can see start(…) = OK. But the clue is in that last line, log(die…). And, when we
look at docker ps, it’s blank. With docker ps -a, we see:

$ docker ps -a
CONTAINER ID  IMAGE         COMMAND            ... STATUS
e64a279663aa  e426f6ef897e  "nginx -g 'daemon  ... Exited (255) 3 minutes ago

So what happened? docker logs tells us more when we look at the Docker daemon
logs:

INFO[0388] GET /v1.17/containers/e64a279663aa/json
INFO[0388] +job container_inspect(e64a279663aa)
INFO[0388] -job container_inspect(e64a279663aa) = OK (0)
INFO[0388] GET /v1.17/containers/e64a279663aa/logs?stderr=1&stdout=1&tail=all
INFO[0388] +job container_inspect(e64a279663aa)
INFO[0388] -job container_inspect(e64a279663aa) = OK (0)
INFO[0388] +job logs(e64a279663aa)
INFO[0388] -job logs(e64a279663aa) = OK (0)
lxc-start: unknown key lxc.cap.keep
lxc-start: failed to read configuration file

There it is: lxc-start: failed to read configuration file. That’s because
“native” containers are not compatible with LXC. They are looking for LXC container
configuration files which Docker did not write out when we created these containers.
The reverse is true: had we created the container with LXC and swapped back to
libcontainer-based “native,” we would lose all of our containers.
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Containers configured with different execution drivers are not
compatible with each other. You will need to re-create containers
when swapping the execution driver.

There are a couple of other gotchas with running the LXC execution driver. One
problem is that you need to be careful about which version of LXC you run. Docker is
developed against a particular version that might or might not match the one in your
distribution. If you need to switch to the LXC driver, you should make sure you can
support the version Docker that works best with. Running something outside the tes‐
ted path is likely to encounter issues. The second issue is that the Linux Containers
Project has begun implementing a competitor to Docker called LXD. We expect that
it will get most of the development attention, with LXC moving to maintenance
mode.

So why would we change our execution driver to LXC? One reason, as stated above, is
for compatibility with other tooling or environments. The LXC backend also supports
a lot of configuration items that the native driver doesn’t. You can set things like fine-
grained resource control, DHCP configuration options, and other host and volume
settings at creation time. Additionally, LXC has some nice command-line tools for
controlling things like cgroups more easily from the server.

Storage
Backing all of the images and all of the containers on your Docker server is a storage
backend that handles reading and writing all of that data. Docker has some strenuous
requirements on its storage backend: it has to support layering, the mechanism by
which Docker tracks changes and reduces both how much disk a container occupies
and how much is shipped over the wire to deploy new images. Using a copy-on-write
strategy, Docker can start up a new container from an existing image without having
to copy the whole image. The storage backend supports that. The storage backend is
what makes it possible to export images as groups of changes in layers, and also lets
you save the state of a running container. In most cases, you need the kernel’s help in
doing this efficiently. That’s because the filesystem view in your container is generally
a union of all of the layers below it, which are not actually copied into your container.
Instead, they are made visible to you, and only when you make changes does any‐
thing get written to your container’s own filesystem.

Docker relies on an array of possible kernel drivers to handle the layering. The
Docker codebase contains code that can handle interaction with all of these backends,
and the decision about which to use can be configured on daemon restart. So let’s
take a look at what is available and some of the pluses and minuses of each.

Pluggable Backends | 153

https://linuxcontainers.org/lxd/introduction/
https://linuxcontainers.org/lxd/introduction/


AUFS, Device Mapper, BTRFS, vfs
Various backends have different limitations that may or may not make them your
best choice. In some cases, your choices of which backend to use are limited by what
your distribution of Linux actually supports. Using drivers that are built in to the ker‐
nel that your distribution ships with will make life ever so much easier. It’s generally
best to stay near the tested path here as well. We’ve seen all manner of oddities from
various backends since Docker’s release. And, as usual, the common case is always the
best supported one. Different backends also report different statistics up through the
Docker Remote API (/info endpoint). This is potentially useful for monitoring your
Docker systems.

AUFS
The original backend, and at the time of this writing the officially recommended
one, is AUFS: a union filesystem driver with reasonable support on various pop‐
ular Linux distributions. It was never accepted into the mainline kernel, however,
and this has limited its availability on various distributions. It is not supported on
recent versions of RedHat, Fedora, or CentOS, for example. It is not shipped in
the standard Ubuntu distribution, but is in the Ubuntu linux-image-extra
package.

Its status as a second-class citizen in the kernel has lead to the development of
many of the other backends now available. Older, but still recent, versions of
AUFS had a limitation of 42 layers, which might constrain how you build base
images if you are running on such a version. If you are shipping images for pub‐
lic consumption, you should definitely keep this limitation in mind because even
if you don’t have it, someone else probably does. The current limit in Docker for
AUFS is 127 layers, which is probably well more than you should ever use for
performance reasons. AUFS has been a pretty good performer on recent kernels
and is quite well-tested with Docker.

devicemapper

RedHat’s various distributions have not supported AUFS recently, so RedHat
contributed a backend to the Docker project based on devicemapper, which is a
heavily tested layer of the Linux kernel that underpins things like LVM, disk
encryption, and other software RAID implementations.

The Docker backend was written quickly to just get some support for Docker
into RedHat-based distributions, and at first had some major flaws. Most of these
have been addressed now and it’s reasonably stable. But even in later versions of
Docker, it has been shown to be only somewhat reliable in production. Unlike
AUFS, which can usually be unloaded from the kernel and then reloaded, device‐
mapper often has other kernel modules that depend on it. That means that the
worst failure modes currently require a reboot of the whole server on which
Docker is running. Performance is reasonable, but no one would call it speedy
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when using the loopback mode (the default). It does support using disk partitions
raw, which should be faster. It does not have much tolerance for having anything
at all written into the container during runtime. It’s the default choice on RedHat/
CentOS distributions before RedHat/CentOS 7.

BTRFS

btrfs is fundamentally a copy-on-write filesystem, which means it’s a pretty
good fit for the Docker image model. On systems that don’t support AUFS and
where the btrfs driver is present, it’s the default backend. This includes, for
example, RHEL and CentOS 7. It also works on various Ubuntu versions. Like
AUFS and unlike devicemapper, Docker is using the backend in the way it was
intended. That means it’s both pretty stable in production and also a good per‐
former. It scales reasonably to thousands of containers on the same system. A
major drawback for Red Hat–based systems is that btrfs does not support SELi‐
nux. If you have btrfs available, we currently recommend it as the most stable
backend for production. The space is changing rapidly, however, and new back‐
ends keep becoming available.

vfs

The vfs driver is the simplest, and slowest, to start up of the supported drivers. It
doesn’t really support copy-on-write. Instead, it makes a new directory and
copies over all of the existing data. It was originally intended for use in tests and
for mounting host volumes. It is very slow to create new containers, but runtime
performance is native, which is a real benefit. It is very simple in mechanism,
which means there is less to go wrong. Docker, Inc., does not recommend it for
production use so you should proceed with caution if you think it’s the right sol‐
ution for your production environment.

overlayfs

overlayfs is now the union filesystem driver that is supported in the mainline
Linux kernel as of version 3.18. That’s good news for its long-term support. It
also means that it’s likely to get a lot of attention to performance and will be avail‐
able on most Linux distributions once they catch up with version 3.18 and higher
kernels. It is a bit like AUFS but fundamentally simpler underneath, which leads
to very strong performance. The Docker backend is still under active develop‐
ment, but we expect it to be a good option going forward.

Storage backends can have a big impact on the performance of
your containers. And if you swap the backend on your Docker
server, all of your existing images will disappear. They are not gone,
but they will not be visible until you switch the driver back. Cau‐
tion is advised.
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You can use docker info to see which storage backend your system is running. It will
also tell you what the underlying filesystem is in cases where there is one. In some
cases, like with devicemapper on raw partitions or with btrfs, there won’t be a differ‐
ent underlying filesystem.

Like with execution drivers, storage backends can be swapped via command-line
arguments to docker on startup. If we wanted to switch our Ubuntu system from
AUFS to devicemapper, we would do that like this:

$ docker -d --storage-driver=devicemapper

That will work on pretty much any Linux system that can support Docker because
devicemapper is almost always present. You will need to have the actual underlying
dependencies in place for the other drivers. For example, without AUFS in the kernel
—usually via a kernel module—Docker will not start up with AUFS set as the storage
driver.

Getting the right storage driver for your systems and deployment needs is one of the
more important technical items to get right when taking Docker to production. Be
conservative; make sure the path you choose is well-supported in your kernel and
distribution.

Containers in Detail
While we all talk about Linux containers as a single entity, they are implemented
through several separate mechanisms that all work together: Control Groups
(cgroups), namespaces, and SELinux/AppArmor. cgroups provide for resource limits,
namespaces allow for processes to use identically named resources and isolate them
from each other’s view of the system, and SELinux/AppArmor provides strong secu‐
rity isolation. We’ll talk about SELinux and AppArmor in a bit. But what do cgroups
and namespaces do for you?

Control Groups (cgroups)
Operations teams have often aimed for one server per intensive task. So, for example,
you don’t run your applications on the database server because they have competing
resource demands and their resource usage could grow unbounded and come to
dominate the server, starving neighbors of performance.

On real hardware systems, this could be quite expensive and so solutions like virtual
servers are very appealing, in part because you can share expensive hardware between
competing applications, and the virtualization layer would handle your resource par‐
titioning. While it saves money, this is a reasonably expensive way to go about it if
you don’t need all the other separation provided by virtualization, because running
multiple kernels introduces a reasonable overhead on the applications. Maintaining
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virtual machines is also not the cheapest solution. All the same, cloud computing has
shown that it’s immensely powerful and with the right tooling, incredibly effective.

But if the only kind of isolation you needed was resource partitioning, wouldn’t it be
great if you could do that on the same kernel? For many years, you could assign a
“niceness” value to a process and it would give the scheduler hints about how you
wanted this process to be treated in relation to others. But it wasn’t possible to impose
hard limits like those that you get with virtual machines. And niceness is not at all
fine-grained: I can’t give something more I/O and less CPU than other processes.
This fine-grained control, of course, is one of the promises of Docker, and the mecha‐
nism that it uses to do that is cgroups, which predate Docker and were invented to
solve just that problem.

Control Groups, or cgroups for short, allow you to set limits on resources for pro‐
cesses and their children. This is the mechanism that Docker uses to control limits on
memory, swap, and CPU resources. They are built in to the Linux kernel and origi‐
nally shipped back in 2007 in Linux 2.6.24. The official kernel documentation defines
them as “a mechanism for aggregating/partitioning sets of tasks, and all their future
children, into hierarchical groups with specialized behaviour.” It’s important to note
that this setting applies to a process and all of the children that descend from it. That’s
exactly how containers are structured.

Every Docker container is assigned a cgroup that is unique to that container. All of
the processes in the container will be in the same group. This means that it’s easy to
control resources for each container as a whole without worrying about what might
be running. If a container is redeployed with new processes added, you can have
Docker assign the same policy and it will apply to all of them.

We talked previously about the cgroups hooks exposed by Docker via the Remote
API. This allows you to control memory, swap, and disk usage. But there are lots of
other things you can limit with cgroups, including the number of I/O operations per
second (iops) a container can have, for example. You might find that in your environ‐
ment you need to use some of these levers to keep your containers under control, and
there are a few ways you can go about doing that. cgroups by their nature need to do
a lot of accounting of resources used by each group. That means that when you’re
using them, the kernel has a lot of interesting statistics about how much CPU, RAM,
disk I/O, and so on. that your processes are using. So Docker uses cgroups not just to
limit resources but also to report on them. These are many of the metrics you see, for
example, in the output of docker stats.

The LXC execution driver
The first way is via the LXC execution driver we showed you earlier. To be able to
pass any of these settings to a container, you will need to have switched your execu‐
tion driver to LXC and re-created any containers that you need to run. You can spec‐
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ify, for example, a cgroups blkio.throttle.write_iops_device setting at container
creation time to restrict the number of write iops a container may have on a device.
Docker doesn’t do that with the native driver, but the LXC driver allows very fine-
grained control of cgroups settings. If we pass this setting to the LXC execution
driver, it will live for the life of the container regardless of how many times we stop
and start it. To do that, we specify an --lxc-conf option to the docker command-
line tool when creating the container:

$ docker run -d --lxc-conf="lxc.cgroups.blkio.throttle.write_iops = 500" \
adejonge/helloworld

This tells the kernel to limit the number of write I/O operations per second to 500 for
this container. That means we can guarantee we’re leaving some spare I/O capacity
for other containers even if our process goes completely awry in its own container.
You can see how this level of control makes it far easier to share resources on the
same hardware, much like with a full virtual machine.

The LXC backend has a unique feature that allows you to pass any cgroup configura‐
tion to the container configuration. This fine-grained control is not currently possible
through the native libcontainer-based backend. It’s reasonable to expect that this
will eventually be possible, but for now it is not. You can read a lot more about which
settings are possible with cgroups in the kernel documentation.

When you use the --lxc-conf argument to pass settings directly to
the LXC execution driver, Docker does not know that it happened.
This is usually OK if you are just passing cgroups information. If
you use it to configure other settings, you might run into trouble
when managing the container from Docker.

The /sys filesystem
The second way to control cgroups in a fine-grained manner, even if you configured
them with Docker or via the LXC execution driver, is to manage them yourself. This
is the most powerful method because changes don’t just happen at creation time, they
can be done on the fly.

On systems with systemd, there are command-line tools like systemctl that you can
use to do this. But since cgroups are built into the kernel, the method that works
everywhere is to talk to the kernel directly via the /sys filesystem. If you’re not famil‐
iar with /sys, it’s a filesystem that directly exposes a number of kernel settings and
outputs. You can use it with simple command-line tools to tell the kernel how to
behave in a number of ways.

It’s important to note that this method of configuring cgroups controls for containers
only works directly on the Docker server and is not available remotely via any API. If
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you use this method, you’ll need to figure out how to script this for your own envi‐
ronment.

Changing cgroups values yourself, outside of any Docker configu‐
ration, breaks some of the repeatability of Docker deployment.
Unless you tool changes into your deployment process, settings will
go away when containers are replaced.

Let’s use an example of changing the CPU cgroups settings for a container we already
have running. First we need to get the long ID of the container, and then we need to
find it in the /sys filesystem. Here’s what that looks like:

$ docker ps --no-trunc
CONTAINER ID IMAGE        COMMAND       CREATED     STATUS    NAMES
dcbbaa763... 0415448f2cc2 "supervisord" 3 weeks ago Up 2 days romantic_morse

Here we’ve had docker ps give us the long ID in the output, and the ID we want is
“dcbbaa763daff1dc0a91e7675d3c93895cb6a6d83371e25b7f0bd62803ed8e86”. You can
see why Docker normally truncates this. In the examples we’re going to truncate it,
too, to make it at least a little readable and fit into the constraints of a printed page.
But you need to use the long one!

Now that we have the ID, we can find our container’s cgroup in the /sys filesystem.
Cgroups are laid out so that each kind of setting is grouped into a module and that
module is exposed at a different place in the /sys filesystem. So when we look at CPU
settings, we won’t see blkio settings, for example. You might take a look around in
the /sys to see what else is there. But for now we’re looking at the CPU controller, so
let’s inspect what that gives us. You need root access on the system to do this because
you’re manipulating kernel settings:

$ ls /sys/fs/cgroup/cpu/docker/dcbbaa763daf
cgroup.clone_children  cpu.cfs_period_us  cpu.rt_runtime_us  notify_on_release
cgroup.event_control   cpu.cfs_quota_us   cpu.shares         tasks
cgroup.procs           cpu.rt_period_us   cpu.stat

The exact path above will change a bit depending on the Linux dis‐
tribution your Docker server is running on and what the hash of
your container is. For example, on CoreOS, the path would look
something like this: /sys/fs/cgroup/cpu/system.slice/

docker-8122be2d7a67a52e949582f6d5

cb2771a8469ab20ecf7b6915e9217d92ddde98.scope/

You can see that under cgroups, there is a docker directory that contains all of the
Docker containers that are running on this host. You can’t set cgroups for things that
aren’t running because they apply to running processes. This is an important point
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that you should consider. Docker takes care of reapplying cgroups settings for you
when you start and stop containers. Without that mechanism, you are somewhat on
your own.

Back to our task. Let’s inspect the CPU shares for this container. Remember that we
earlier set these via the Docker command-line tool. But for a normal container where
no settings were passed, this setting is the default:

$ cat /sys/fs/cgroup/cpu/docker/dcbbaa763daf/cpu.shares
1024

1024 CPU shares means we are not limited at all. Let’s tell the kernel that this con‐
tainer should be limited to half that:

$ echo 512 > /sys/fs/cgroup/cpu/docker/dcbbaa763daf/cpu.shares
$ cat /sys/fs/cgroup/cpu/docker/dcbbaa763daf/cpu.shares
512

There you have it. We’ve changed the container’s settings on the fly. This method is
very powerful because it allows you to set any cgroups setting at all for the container.
But as we mentioned earlier, it’s entirely ephemeral. When the container is stopped
and restarted, the setting is reset to the default:

$ docker stop dcbbaa763daf
dcbbaa763daf
$ cat /sys/fs/cgroup/cpu/docker/dcbbaa763daf/cpu.shares
cat: /sys/fs/.../cpu.shares: No such file or directory

You can see that the directory path doesn’t even exist any more now that the con‐
tainer is stopped. And when we start it back up, the directory comes back but the set‐
ting is back to 1024:

$ docker start dcbbaa763daf
dcbbaa763daf
$ cat /sys/fs/cgroup/cpu/docker/dcbbaa763daf/cpu.shares
1024

If you were to change these kinds of settings in a production system via the /sys
fileystem directly, you’d want to tool that directly. A daemon that watches the docker
events stream and changes settings at container startup, for example, is a possibility.
Currently, the community has not contributed much rich tooling to this aspect. It’s
likely that Docker will eventually expand the native driver’s functionality to allow this
level of configuration.

As of Docker 1.6, it is possible to create custom cgroups outside of
Docker and then attach a new container to that cgroup using the --
cgroup-parent argument to docker create.
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Kernel Namespaces, User Namespaces
Inside each container, you see a filesystem, network interfaces, disks, and other
resources that all appear to be unique to the container despite sharing the kernel with
all the other processes on the system. The network interface on the actual machine,
for example, is a single shared resource. But to your container it looks like it has the
run of an entire network interface to itself. This is a really useful abstraction: it’s what
makes your container feel like a machine all by itself. The way this is implemented in
the kernel is with namespaces. Namespaces take a single global resource and make it
appear as a single owned resource to the container.

Rather than just having a single namespace, however, containers have a namespace
on each of the six types of resources that are currently namespaced in the kernel:
mounts, UTS, IPC, PID, network, and user namespaces. We’ll explain all of those in a
minute. But essentially when you talk about a container, you’re talking about a num‐
ber of different namespaces that Docker sets up on your behalf. So what do they all
do?

Mount namespaces
Docker uses these primarily to make your container look like it has its entire own
filesystem namespace. If you’ve ever used a chroot jail, this is its tougher cousin.
It looks a lot like a chroot jail but goes all the way down to the kernel so that even
mount and unmount system calls are namespaced. If you use docker exec or
nsenter to get into a container, you’ll see a filesystem rooted on “/”. But we know
that this isn’t the actual root partition of the system. It’s the mount namespaces
that make that possible.

UTS namespaces
Named for the kernel structure they namespace, and ultimately from the “Unix
Timesharing System,” UTS namespaces give your container its own hostname
and domain name. This is also used by older systems like NIS to identify which
domain a host belongs to. When you enter a container and see a hostname that is
not the same as the machine on which it runs, it’s this namespace that makes that
happen.

IPC namespaces
These isolate your container’s System V IPC and POSIX message queue systems
from those of the host. Some IPC mechanisms use filesystem resources like
named pipes, and those are covered by the mount namespace. The IPC name‐
space covers things like shared memory and semaphores that aren’t filesystem
resources but which really should not cross the container wall.

PID namespaces
We already showed you that you can see all of the processes in containers in the
Linux ps output on the host Docker server. But inside the container, processes
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have a totally different PID. This is the PID namespace in action. A process has a
unique PID in each namespace to which it belongs. If you look in /proc inside a
container, or run ps, you will only see the processes inside the container’s PID
namespace.

Network namespaces
This is what allows your container to have its own network devices, ports, etc.
When you run docker ps and see the bound ports for your container, you are
seeing ports from both namespaces. Inside the container your nginx might be
bound to port 80, but that’s on the namespaced network interface. This name‐
space makes it possible to have what seems to be a completely separate network
stack for your container.

User namespaces
These provide isolation between the user and group IDs inside a container and
those on the Docker host. Earlier when we looked at ps output outside the con‐
tainer and inside and saw different user IDs, this is how that happened. A new
user inside a container is not a new user on the Docker host’s main namespace,
and vice versa. There are some subtleties here, though. For example, root in a
user namespace is not necessarily root on the main system. Some of this work is
reasonably new to the Linux kernel and there are concerns about security leak‐
age, which we’ll talk about in a bit.

So namespaces provide the visual, and in many cases functional, isolation that makes
a container look like a virtual machine even though it’s on the same kernel. Let’s
explore what some of that namespacing that we just described actually looks like.

Exploring Namespaces

One of the easiest to demonstrate is the UTS namespace, so let’s use docker exec to
get a shell in a container and take a look. From within the docker server, run the fol‐
lowing:

$ hostname
docker2
$ docker exec -i -t 28970c706db0 /bin/bash -l
# hostname
28970c706db0

Although docker exec will work from a remote system, here we ssh into the Docker
server itself in order to demonstrate that the hostname of the server is different from
inside the container.

That docker exec command line gets us an interactive process (-i) and allocates a
pseudo-tty (-t), and then executes /bin/bash while executing all the normal login
process in the bash shell (-l). Once we have a terminal open inside the container’s
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namespace, we ask for the hostname and get back the container ID. That’s the default
hostname for a Docker container unless you tell Docker to name it otherwise. This is
a pretty simple example, but it should clearly show that we’re not in the same name‐
space as the host.

Another example that’s easy to understand and demonstrate is with PID namespaces.
Let’s log in to the Docker server again, take a look at the process list of one of our
containers, and then get the same list from inside the container:

$ docker exec -i -t 28970c706db0 /bin/bash -l
# ps -ef
UID        PID  PPID  C STIME TTY          TIME CMD
root         1     0  0 22:20 ?        00:00:00 /bin/bash
root        22     0  0 22:53 ?        00:00:00 /bin/bash -l
# exit
logout
$ ps axlf
...
46049     1  20   0 706552 18228 futex_ Ssl  ?       2:16 /usr/bin/docker -d
46135 46049  20   0  18104  1892 n_tty_ Ss+  pts/0   0:00  \_ /bin/bash

What we can see here is that from inside our container, the original command run by
Docker from the CMD in our Dockerfile is /bin/bash and it has been assigned the
PID 1 inside the container. You might recall that this is the PID normally used by the
init process on Unix systems. In this case, the /bin/bash we started to create the
container in the first place is the first PID, so it gets ID 1. But in the Docker host’s
main namespace, we do a little work to find our container’s processes and we see the
PID there is not 1, it’s 46135 and it’s a child of the docker daemon, which is PID
46049.

The other namespaces work in essentially the same manner and you probably get the
idea by now. It’s worth pointing out here that when we were working with nsenter
back in Chapter 4, we had to pass a pretty arcane (at that point) set of arguments to
the command when we ran it to enter a container from the Docker server. Let’s look
at that command line now:

$ sudo nsenter --target $PID --mount --uts --ipc --net --pid
root@3c4f916619a5:/#

After explaining namespaces in detail, this probably makes a lot more sense to you.
You’re telling nsenter exactly which of the namespaces you want to enter. It can also
be educational to use nsenter to only enter parts of the namespace of a throwaway
container to see what you get. In the example above, we enter all of the namespaces
we just talked about.

When it comes down to it, namespaces are the primary thing that make a container
look like a container. Combine them with cgroups and you have a reasonably robust
isolation between processes on the same kernel.
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Security
We’ve spent a good bit of space now talking about how Docker contains applications,
allows you to constrain resources, and uses namespaces to give the container a view
of the world that is unique to the container. We also briefly mentioned the need for
SELinux/AppArmor. One of the wins for containers is the ability to replace virtual
machines in a number of cases. So let’s take a look at what isolation we really get, and
what we don’t.

How Secure Is Your Container?
You are undoubtedly aware by now that the isolation you get from a container is not
as strong as that from a virtual machine. We’ve been reinforcing the idea from the
start of this book that containers are just processes running on the Docker server.
Despite the isolation provided by namespaces, containers are not as secure as you
might imagine if the idea of a lightweight virtual machine persists.

One of the big boosts in performance for containers, and one of the things that makes
them lightweight, is that they share the kernel of the Docker server. This is also the
source of the greatest security concerns around Docker containers. The main reason
is that not everything in the kernel is namespaced. We talked about all of the name‐
spaces that exist and how the container’s view of the world is constrained by the
namespaces it runs in. But there are still lots of places in the kernel where really no
isolation exists. And namespaces only constrain you if you can’t tell the kernel to give
you access to a different one.

For purposes of security, containers are more secure than an application on the host
directly because cgroups (if you use them), and namespaces provide some isolation
from the host’s core resources. But you must not think of containers as a substitute
for good security practices. If you think about how you would run an application on a
production system, that is really how you should run your containers. If your applica‐
tion would run as a non-privileged user in a non-container environment, then it
should be run in the same manner inside the container, for example. You can tell
Docker to run your whole container as a non-privileged user, and in production
deployments, this is probably what you want to do. You can’t, unfortunately, enforce
that Docker start all containers as non-privileged users at this time. But starting them
that way yourself, or at least dropping privileges inside the running application as
soon as possible, is a good idea.

Let’s look at some security risks and controls.

UID 0
The first and most overarching security risk in a container is that the root user in the
container is actually the root user on the system. There are extra constraints on root in
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a container, and namespaces do a good job of isolating root in the container from the
most dangerous parts of the /proc and /sys filesystems, for example. But generally
speaking you have root access so if you can get access to resources outside of your
namespace, then the kernel will see you as root. And Docker starts all services in con‐
tainers as root by default which means you are then responsible for managing privi‐
lege in your applications just like you are on any Linux system. Let’s explore some of
the limits on root access and look at some obvious holes. This is not intended to be an
exhaustive statement on container security, but rather to give you a healthy under‐
standing of some of the classes of security risks.

First, we’ll fire up a container and get a bash shell using the public Ubuntu image
shown in the following code. Then we’ll see what kinds of access we have:

$ sudo docker run -t -i ubuntu /bin/bash
root@808a2b8426d1:/# lsmod
Module                  Size  Used by
xt_nat                 12726  2
xt_tcpudp              12603  8
veth                   13244  0
xt_addrtype            12713  2
xt_conntrack           12760  1
iptable_filter         12810  1
acpiphp                24119  0
ipt_MASQUERADE         12759  4
aufs                  191008  14
iptable_nat            12909  1
nf_conntrack_ipv4      14538  2
nf_defrag_ipv4         12729  1 nf_conntrack_ipv4
nf_nat_ipv4            13316  1 iptable_nat
nf_nat                 26158  4 ipt_MASQUERADE,nf_nat_ipv4
nf_conntrack           83996  6 ipt_MASQUERADE,nf_nat
ip_tables              27473  2 iptable_filter,iptable_nat
x_tables               29938  7 ip_tables,xt_tcpudp
bridge                101039  0
floppy                 70206  0
...

We’ve cut the output down a bit, but what we’re looking at here is a new container
that we started and we’ve just asked the kernel to tell us what modules are loaded.
That’s not too surprising: a normal user can do that. But it does reinforce that we’re
talking to the same Linux kernel. If you run this listing on the Docker server itself, it
will be identical. So we can see the kernel modules; what happens if we try to unload
the floppy module?

root@808a2b8426d1:/# rmmod floppy
rmmod: ERROR: ... kmod_module_remove_module() could not remove 'floppy': ...
rmmod: ERROR: could not remove module floppy: Operation not permitted

That’s the same error message we would get if we were a nonprivileged user telling
the kernel what to do. This should give you a good sense that the kernel is doing its
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best to prevent us from doing things we shouldn’t. And because we’re in a limited
namespace, we also can’t get the kernel to give us access to the top-level namespace
either. We’re really relying on there being no bugs in the kernel that allow us to esca‐
late that, however, because if we do, we’re root and can change things.

We can contrive a simple example of how things can go wrong by starting a bash shell
in a container that has had the Docker server’s /etc bind mounted into the contain‐
er’s namespace. Keep in mind that anyone who can start a container on your Docker
server can do what we’re about to do any time they like because you can’t configure
Docker to prevent it:

$ docker run -i -t -v /etc:/host_etc ubuntu /bin/bash
root@e674eb96bb74:/# more /host_etc/shadow
root:!:16230:0:99999:7:::
daemon:*:16230:0:99999:7:::
bin:*:16230:0:99999:7:::
sys:*:16230:0:99999:7:::
...
irc:*:16230:0:99999:7:::
nobody:*:16230:0:99999:7:::
libuuid:!:16230:0:99999:7:::
syslog:*:16230:0:99999:7:::
messagebus:*:16230:0:99999:7:::
kmatthias:$1$aTAYQT.j$3xamPL3dHGow4ITBdRh1:16230:0:99999:7:::
sshd:*:16230:0:99999:7:::
lxc-dnsmasq:!:16458:0:99999:7:::

Here we’ve used the -v switch to Docker to tell it to mount a host path into the con‐
tainer. The one we’ve chosen is /etc, which is a dangerous thing to do. But it serves to
prove a point: we are root in the container and root has file permissions in this path.
So we can look at the real /etc/shadow file any time we like. There are plenty of other
things you could do here, but the point is that by default you’re only partly con‐
strained.

It is a bad idea to run your container processes with UID 0. This is
because any exploit that allows the process to somehow escape its
namespaces will expose your host system to a fully privileged pro‐
cess. You should always run your standard containers with a non-
privileged UID.

Privileged containers
There are times when you need your container to have special kernel capabilities that
would normally be denied to the container. This could include many things like
mounting a USB drive, modifying the network configuration, or creating a new Unix
device.

In the following code, we try to change the MAC address of our container:
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1 Swapfiles are used to virtually extend your system’s memory capacity by giving it access to a large file for addi‐
tional storage space.

$ docker run --rm -ti ubuntu /bin/bash
root@b328e3449da8:/# ip link ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state ...
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
9: eth0: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state ...
    link/ether 02:42:0a:00:00:04 brd ff:ff:ff:ff:ff:ff
root@b328e3449da8:/# ip link set eth0 address 02:0a:03:0b:04:0c
RTNETLINK answers: Operation not permitted
root@b328e3449da8:/# exit

As we can see, it doesn’t work. This is because the underlying Linux kernel blocks the
nonprivileged container from doing this, which is exactly what we normally want.
However, assuming that we need this functionality for our container to work as
intended, the easiest way to significantly expand a container’s privileges is by launch‐
ing it with the --privileged=true argument:

$ docker run -ti --rm --privileged=true ubuntu /bin/bash
root@88d9d17dc13c:/# ip link ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state ...
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
9: eth0: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state ...
    link/ether 02:42:0a:00:00:04 brd ff:ff:ff:ff:ff:ff
root@88d9d17dc13c:/# ip link set eth0 address 02:0a:03:0b:04:0c
root@88d9d17dc13c:/# ip link ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state ...
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
9: eth0: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state ...
    link/ether 02:0a:03:0b:04:0c brd ff:ff:ff:ff:ff:ff
root@88d9d17dc13c:/# exit

In the preceding output, you will notice that we no longer get the error and the link/
ether entry for eth0 has been changed.

The problem with using the --privileged=true argument is that you are giving your
container very broad privileges, and in most cases you likely only need one or two
kernel capabilities to get the job done.

If we explore our privileged container some more, we will discover that we have capa‐
bilities that have nothing to do with changing the MAC address. I can even do things
that could cause issue with both Docker and the host system. In the following code,
we are going to create a memory swapfile1 and enable it:

$ docker run -ti --rm --privileged=true ubuntu /bin/bash
root@0ffcdd8f7535:/# dd if=/dev/zero of=/swapfile1 bs=1024 count=100
100+0 records in
100+0 records out
102400 bytes (102 kB) copied, 0.00046004 s, 223 MB/s
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root@0ffcdd8f7535:/# mkswap /swapfile1
Setting up swapspace version 1, size = 96 KiB
no label, UUID=fc3d6118-83df-436e-867f-87e9fbce7692
root@0ffcdd8f7535:/# swapon /swapfile1
root@0ffcdd8f7535:/# swapoff /swapfile1
root@0ffcdd8f7535:/# exit
exit

In the previous example, if you do not disable the swapfile before
exiting your container, you will leave your Docker host in a bad
state where Docker can’t destroy the container because your host is
accessing a swapfile that is inside the container’s filesystem.
In that case, the error message will look something like this:

FATAL [0049] Error response from daemon:
Cannot destroy container 0ff...670:
 Driver overlay failed to remove root filesystem 0ff...670:
 remove /var/lib/docker/overlay/0ff...670/upper/swapfile1:
 operation not permitted

You can fix this from the Docker server by running:
$ sudo swapoff /var/lib/docker/overlay/0ff...670/upper/swapfile1

So as we’ve seen, it is possible for people to do bad things in a fully privileged con‐
tainer.

To change the MAC address, the only kernel capability we actually need is
CAP_NET_ADMIN. Instead of giving our container the full set of privileges, we can give
it this one privilege by launching our Docker container with the --cap-add argu‐
ment, as shown here: 

$ docker run -ti --rm --cap-add=NET_ADMIN ubuntu /bin/bash
root@852d18f5c38d:/# ip link set eth0 address 02:0a:03:0b:04:0c
root@852d18f5c38d:/# ip link ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state ...
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
9: eth0: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state ...
    link/ether 02:0a:03:0b:04:0c brd ff:ff:ff:ff:ff:ff
root@852d18f5c38d:/# exit

You should also notice that although we can change the MAC address, we can no
longer use the swapon command inside our container.

$ docker run -ti --rm --cap-add=NET_ADMIN ubuntu /bin/bash
root@848aa7924594:/# dd if=/dev/zero of=/swapfile1 bs=1024 count=100
100+0 records in
100+0 records out
102400 bytes (102 kB) copied, 0.000575541 s, 178 MB/s
root@848aa7924594:/# mkswap /swapfile1
Setting up swapspace version 1, size = 96 KiB
no label, UUID=3b365d90-8116-46ad-80c5-24341299dc41
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root@848aa7924594:/# swapon /swapfile1
swapon: /swapfile1: swapon failed: Operation not permitted
root@848aa7924594:/# exit

By using both the --cap-add and --cap-drop arguments to docker run, you can
finely control the Linux kernel capabilities that your container has.

SElinux, AppArmor
Earlier we talked about how containers are a combination of two or three things:
cgroups, namespaces, and SELinux or AppArmor. We’re going to talk about the latter
two systems now. They allow you to apply security controls that extend beyond those
normally supported by Unix systems. SELinux originally came out of the US National
Security Agency and supports very fine-grained control. AppArmor is an effort to
achieve many of the same goals without the level of complication involved in SELi‐
nux. It actually predates SELinux, having first appeared in 1998 in the Immunix Linux
distribution. Novell, SuSE, and Canonical have been some of its recent champions.

Docker ships by default with reasonable profiles enabled on platforms that support
them. This means that on Ubuntu systems, AppArmor is enabled and configured,
and on CentOS/RHEL/Fedora systems, SELinux is. You can further configure these
profiles to prevent things like what we’ve just done in Chapter 9, and if you’re run‐
ning Docker in production, you should do a risk analysis and determine if this is
something you should look at. Here’s a quick outline of the benefits we’re getting from
these systems.

They provide what is known as Mandatory Access Control. This is a class of security
system where a system-wide security policy grants users (or “initiators”) access to a
resource (or “target”). What this allows you to do is to prevent anyone, including
root, from accessing a part of the system that they should not have access to. You can
apply the policy to a whole container so that all processes are constrained. Many
chapters would be required to give a very clear overview of how to configure these
systems in detail. The default profiles are doing things like blocking access to parts of
the /proc and /sys filesystems that would be dangerous to expose in the container,
even though they show in the container’s namespace. They also provide more nar‐
rowly scoped mount access to prevent containers from getting ahold of mount points
they should not see.

If you are considering using Docker containers in production, you should make cer‐
tain that the systems you are running have AppArmor or SELinux enabled and run‐
ning. For the most part, both systems are reasonably equivalent. But in the Docker
context, one notable limitation of SELinux is that it only works fully on systems that
support filesystem metadata, which means that it won’t work for you on BTRFS-
backed Docker daemons, for example. Only the devicemapper backend currently
fully supports SELinux. Unfortunately, that backend is also not currently very stable
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for production. The OverlayFS backend is going to support this shortly. AppArmor,
on the other hand, does not use filesystem metadata and so works on all of the
Docker backends. Which one you use is going to be somewhat distribution-centric,
so you may be forced to choose a filesystem backend based on which distribution you
run.

How Secure Is the Docker Daemon?
From a security standpoint, the Docker daemon is the only completely new risk you
are introducing to the network. Your containerized applications are not less secure
and are at least a little more secure than they would be if deployed outside of contain‐
ers. But without the containers, you would not be running the daemon. You can run
Docker such that it doesn’t expose any ports on the network. In this model, you’d
need to do something like set up an SSH tunnel to each Docker server if you wanted
to control the containers. That’s not very useful, so nearly everyone will expose one or
more ports on the local network.

The default configuration for Docker on all the distributions we’re familiar with leave
Docker isolated from the network with only a local Unix socket exposed. Since you
cannot remotely administer Docker when it is set up this way, many people add the
nonencrypted port 2375 to the configuration. This is great for getting going with
Docker, and depending on your security analysis it might be all right for you. But it’s
probably not what you should do in any environment where you need a reasonable
level of security.

You can do a few things to tighten Docker down that make sense in most production
environments. But no matter what you do, you are relying on the Docker daemon
itself to be resilient against things like buffer overflows and race conditions, two of
the more common classes of security vulnerabilities. This is true of any network ser‐
vice. The risk is perhaps a little higher from Docker because it has access to control all
of your applications, and because of the privileges required, it has to run as root.

The basics of locking Docker down are common with many other network daemons:
encrypt your traffic and authenticate users. The first is reasonably easy to set up on
Docker and the second is not as easy. If you have certificates you can use for protect‐
ing HTTP traffic to your hosts, such as a wildcard cert for your domain, you can turn
on TLS support to encrypt all of the traffic to your Docker servers. This is a good
step. The Docker documentation will walk you through doing this.

Authorization is more complicated: Docker does not provide any kind of fine-grained
authorization: you either have access or you don’t. But the authentication control it
does provide is reasonably strong: signed certificates. Unfortunately this also means
that you don’t get a cheap step from no authentication to some authentication
without also having to set up your own certificate authority in most cases. If your
organization already has one, then you are in luck. Certificate management needs to
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be implemented carefully in any organization both to keep them secure and to dis‐
tribute them efficiently. So, given that, here are the basic steps:

1. Set up a method of generating and signing certificates.
2. Generate certificates for the server and clients.
3. Configure Docker to require certificates with --tlsverify.

Detailed instructions on getting a server and client set up, as well as a simple certifi‐
cate authority are included in the Docker documentation.

Because it’s a daemon that runs with privilege, and because it has direct control of
your applications, it’s probably not a good idea to expose Docker directly on the
Internet. If you need to talk to your Docker hosts from outside your network, you
should consider something like a VPN or an SSH tunnel to a jump host.

Networking
Early on we described the layers of networking that are in place between a Docker
container and the real live network. Let’s take a closer look at how that works.
Figure 10-1 shows a drawing of a typical Docker server, where there are three con‐
tainers running on their private network, shown on the right. One of them has a pub‐
lic port (TCP port 10520) that is exposed on the Docker server. We’ll track how an
inbound request gets to the Docker container and also how a Docker container can
make an outbound connection to the external network.

Figure 10-1. Swarm Manager controlling Docker cluster

If we have a client somewhere on the network that wants to talk to the nginx server
running on TCP port 80 inside Container 1, the request will come into the eth0
interface on the Docker server. Because Docker knows this is a public port, it has
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spun up an instance of docker-proxy to listen on port 10520. So our request is passed
to the docker-proxy process, which then makes the request to the correct container
address and port on the private network. Return traffic from the request flows
through the same route.

Outbound traffic from the container follows a different route, in which the docker-
proxy is not involved at all. In this case, Container 3 wants to contact a server on the
public Internet. It has an address on the private network of 172.16.23.1 and its default
route is the docker0 interface 172.16.23.7. So it sends the traffic there. The Docker
server now sees that this traffic is outbound and it has traffic forwarding enabled.
And since the virtual network is private, it wants to send the traffic from its own pub‐
lic address instead. So the request is passed through the kernel’s network address
translation layer (NAT) and put onto the external network via the eth0 interface on
the server. Return traffic passes through the same route. Note that the NAT is one-
way, so containers on the virtual network will see real network addresses in response
packets.

You’ve probably noted that it’s not a simple configuration. It’s a fair amount of mecha‐
nism, but it makes Docker seem pretty transparent. It’s also a contributor to the secu‐
rity posture of the Docker stack because the containers are namespacd into their own
network namespace, are on their own private network, and don’t have access to
things like the main system’s DBus or IPTables.

Let’s take a look at what is happening at a more detailed level. The interfaces that
show up in ifconfig or ip addr show in the Docker container are actually virtual
Ethernet interfaces on the Docker server’s kernel. They are then mapped into the net‐
work namespace of the container and given the names that you see inside the con‐
tainer. Let’s take a look at what we see when running ip addr show on a Docker
server. We’ll shorten the output a little for clarity and typesetting issues, as shown
here:

$ ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP>
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP>
    link/ether 00:0c:29:b2:2a:21 brd ff:ff:ff:ff:ff:ff
    inet 172.16.168.178/24 brd 172.16.168.255 scope global eth0
    inet6 fe80::20c:29ff:feb2:2a21/64 scope link
       valid_lft forever preferred_lft forever
4: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP>
    link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:ff:ff:ff
    inet 172.17.42.1/16 scope global docker0
    inet6 fe80::5484:7aff:fefe:9799/64 scope link
       valid_lft forever preferred_lft forever
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112: vethf3e8733: <BROADCAST,UP,LOWER_UP>
    link/ether b6:3e:7a:ba:5e:1c brd ff:ff:ff:ff:ff:ff
    inet6 fe80::b43e:7aff:feba:5e1c/64 scope link
       valid_lft forever preferred_lft forever

What that is telling us is that we have the normal loopback interface, our real Ether‐
net interface eth0, and then the Docker bridge interface, docker0, that we described
earlier. This is where all the traffic from the Docker containers is picked up to be
routed outside the virtual network. The surprising thing in this output is that
vethf3e8733 interface. When Docker creates a container, it creates two virtual inter‐
faces, one of which sits on the server-side and is attached to the docker0 bridge, and
one that is exposed into the container’s namespace. What we’re seeing here is the
server side interface. Notice how it doesn’t show up as having an IP address assigned
to it? That’s because this interface is just joined to the bridge. This interface will also
have a totally different name in the container’s namespace as well.

It would be entirely possible to run a container without the whole networking config‐
uration that Docker puts in place for you. And the docker-proxy can be somewhat
throughput limiting for very high-volume data services. So what does it look like if
we turn it off? Docker lets you do this on a per-container basis with the --net=host
command-line switch. There are times, like when you want to run high throughput
applications, where you might want to do this. But you lose some of Docker’s flexibil‐
ity when you do it. Even if you never need or want to do this, it’s useful to expose how
the mechanism works underneath.

Like other things in this chapter, this is not a setting you should
take lightly. It has operational and security implications that might
be outside your tolerance level. It can be the right thing to do, but
you should consider the repercussions.

Let’s start a container with --net=host and see what happens, as shown here:

$ docker run -i -t --net=host ubuntu /bin/bash
$ ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP>
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP>
    link/ether 00:0c:29:b2:2a:21 brd ff:ff:ff:ff:ff:ff
    inet 172.16.168.178/24 brd 172.16.168.255 scope global eth0
    inet6 fe80::20c:29ff:feb2:2a21/64 scope link
       valid_lft forever preferred_lft forever
3: lxcbr0: <BROADCAST,MULTICAST,UP,LOWER_UP>
    link/ether fe:59:0b:11:c2:76 brd ff:ff:ff:ff:ff:ff
    inet 10.0.3.1/24 brd 10.0.3.255 scope global lxcbr0
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    inet6 fe80::fc59:bff:fe11:c276/64 scope link
       valid_lft forever preferred_lft forever
4: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP>
    link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:ff:ff:ff
    inet 172.17.42.1/16 scope global docker0
    inet6 fe80::5484:7aff:fefe:9799/64 scope link
       valid_lft forever preferred_lft forever
112: vethf3e8733: <BROADCAST,UP,LOWER_UP>
    link/ether b6:3e:7a:ba:5e:1c brd ff:ff:ff:ff:ff:ff
    inet6 fe80::b43e:7aff:feba:5e1c/64 scope link
       valid_lft forever preferred_lft forever

That should look pretty familiar. That’s because when we run a container with the
host networking option, we’re just in the host’s network namespace. Note that we’re
also in the server’s UTS namespace. Our server’s hostname is “docker2,” so let’s see
what the container’s hostname is:

$ hostname
docker2

If we do a mount to see what’s mounted, though, we see that Docker is still maintain‐
ing our /etc/resolv.conf, /etc/hosts, and /etc/hostname. Interestingly, the /etc/
hostname simply contains the server’s hostname. Just to prove that we can see all the
normal networking on the Docker server, let’s look at netstat -an and see if we can
see the docker daemon running:

$netstat -an | grep 2375
tcp6       0      0 :::2375                 :::*                    LISTEN

So we are indeed in the server’s network namespace. What all of this means that if we
were to launch a high-throughput network service, we would be able to expect net‐
work performance from it that is essentially native. But it also means we could bind
to ports that would collide with those on the server, so if you do this you should be
careful about how you allocate port assignments.

There is a lot more you can configure with the Docker network layer. But the defaults
and the host networking are the two you’re most likely to use or encounter in the
wild. But some of the other things you can configure, for example, are the DNS
servers that are used, the DNS search domain, your own bridge interface, and more.
The networking section of the Docker documentation gives an overview of how to do
some of these things.

For advanced network configuration of Docker, check out Weave—
a virtual network tool for spanning containers across multiple
Docker hosts. And if you are going to be using Kubernetes, take a
look at CoreOS’s flannel, which is an etcd-backed network fabric
for containers.
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CHAPTER 11

Designing Your Production
Container Platform

When implementing any core technology in production, the most mileage is often
gained by designing a resilient platform that is forgiving of the unexpected issues that
will eventually occur. When used as intended, with close attention to detail, Docker
can be an incredibly powerful tool. As a young technology that is going through very
rapid growth cycles, you are bound to trigger frustrating bugs in Docker and its inter‐
actions with the underlying kernel.

If, instead of simply deploying Docker into your environment, you take the time to
build a well-designed container platform on top of Docker, you can enjoy the many
benefits of a Docker-based workflow while protecting yourself from some of the
sharper exposed edges that typically exist in such a high-velocity project.

Like all other technology, Docker doesn’t magically solve all your problems. To reach
its true potential, organizations must make very conscious decisions about why and
how they are going to use it. For very small projects, it is possible to use Docker in a
very simple manner; however, if you plan to support a large project that can scale
with demand, it quickly becomes important to ensure that you are making very delib‐
erate decisions about how your applications and platform are designed. This ensures
that you can maximize the return on your investment in the technology. Taking the
time to design your platform with intention can also make it much easier to modify
your production workflow over time. A well-designed Docker platform will ensure
that your software is running on a dynamic foundation that can easily be upgraded as
technology and processes develop over time.

Below we will explore some of the leading thinking about how container platforms
should be designed to improve the resiliency and supportability of the overall plat‐
form.
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The Twelve-Factor App
In November of 2011, Adam Wiggins, cofounder of Heroku, and his colleagues,
released an article called “The Twelve-Factor App.” This document describes a series
of 12 distilled practices that come from the experiences of Heroku engineers on how
to design applications that will thrive and grow in a modern Software-as-a-Service
(SaaS) environment.

Although not required, applications built with these 12 steps in mind are ideal candi‐
dates for the Docker workflow. Below we explore each of these steps and why they
can, in numerous ways, help improve your development cycle.

Codebase
A single codebase tracked in revision control.

Many instances of your application will be running at any given time, but they should
all come from the same code repository. Each and every Docker image of an applica‐
tion should be built from a single source code repository that contains all the code
required to build the Docker container. This ensures that the code can easily be
rebuilt, and that all third-party requirements are well defined within the repository, if
not actually directly included.

What this means is that building your application shouldn’t require stitching together
code from multiple source repositories. That is not to say that you can’t have a
dependency on an artifact from another repo. But it does mean that there should be a
clear mechanism for determining which pieces of code were shipped when you built
your application. Docker’s ability to simplify dependency management is much less
useful if building your application requires pulling down mutiple source code reposi‐
tories and copying pieces together. And it’s not repeatable unless you know the magic
incantation.

Dependencies
Explicitly declare and isolate dependencies.

Never rely on the belief that a dependency will be made available via some other ave‐
nue, like the operating system install. Any dependencies that your application
requires should be well-defined in the code base and pulled in by the build process.
This will help ensure that your application will run when deployed, without relying
on libraries being installed by other processes. This is particularly important within a
container since the container’s processes are isolated from the rest of the host operat‐
ing system and will usually not have access to anything outside the container image’s
filesystem.
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The Dockerfile and language-dependent configuration files like Node’s package.json
or Ruby’s Gemfile should define every nonexternal dependency required by your
application. This ensures that your image will run correctly on any system to which it
is deployed. Gone will be the days when you deploy and run your application only to
find out that important libraries are missing or installed with wrong version. This has
huge reliability and repeatability advantages, and very positive ramifications for sys‐
tem security. If you update the OpenSSL or libyaml libraries that your Dockerized
application uses to fix a security issue, you can be assured that it will always be run‐
ning with that version wherever you deploy that particular application.

It is also important to note that most Docker base images are actually much larger
than they need to be. Remember that your application process will be running on a
shared kernel, and the only files that you actually need inside your base image are
ones that the process will require to run. It’s good that the container makes this
repeatable. But it can sometimes mask hidden dependencies. Although people often
start with a minimal install of Ubuntu or CentOS, these images still contain a lot of
operating system files that your process almost certainly does not need, or possibly
some that you rely on and don’t realize it. You need to be in charge of your dependen‐
cies, even when containerizing your application.

A good way to shed light on the depth of your application’s dependency tree is to
compare it to a container for a statically linked program written in a language like Go
or C. They don’t need any libraries or command-line binaries. To explore what one of
these ultra-light containers might look like, let’s run a statically linked Go program in
a container by executing the following command:

$ docker run --publish=8085:8080 --detach=true \
  --name=static-helloworld adejonge/helloworld:latest
365cc5ddb0c40a50763217c66be26959933028631ef24a60a7da9944971587a3

Keep a copy of the long ID hash for your container, because you will need it in a
moment. If you now point a local web browser at port 8085 on your Docker server
(i.e., http://172.17.42.10:8085/) you would see the message:

Hello World from Go in minimal Docker container

Contrary to everything we’ve looked at in this book so far, this very minimal con‐
tainer does not contain a shell or SSH. This means we can’t use ssh, nsenter, or
docker exec to examine it. Instead we can examine the container’s filesystem by log‐
ging directly into the Docker server via ssh, and then looking into the container’s file‐
system itself. To do that, we need to find the filesystem on the server’s disk. We do
this by first running docker info to determine the root directory for the storage
driver.

$ docker info
...
Storage Driver: aufs
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 Root Dir: /mnt/sda1/var/lib/docker/aufs
...

The Docker Root Dir and the Root Dir are not the same things.
We specifically want the Root Dir listed under Storage Driver.

By combining the Docker root directory and the container hash into a file path, it is
possible to view the container’s filesystem from the Docker server. You might need to
poke around in the storage driver’s root directory a bit to determine the exact loca‐
tion of the container filesystems. In our case, it is under the additional directory
called mnt.

If we now list the files in that directory, we will discover that the number of files in
this container is incredibly small:

$ ls -R /mnt/sda1/var/lib/docker/aufs/mnt/36...a3
/mnt/sda1/var/lib/docker/aufs/mnt/36...a3:
dev/        etc/        helloworld  proc/       sys/

/mnt/sda1/var/lib/docker/aufs/mnt/36...a3/dev:
console  pts/     shm/

/mnt/sda1/var/lib/docker/aufs/mnt/36...a3/dev/pts:

/mnt/sda1/var/lib/docker/aufs/mnt/36...a3/dev/shm:

/mnt/sda1/var/lib/docker/aufs/mnt/36...a3/etc:
hostname     hosts        mtab         resolv.conf

/mnt/sda1/var/lib/docker/aufs/mnt/36...a3/proc:

/mnt/sda1/var/lib/docker/aufs/mnt/36...a3/sys:

You can see that in addition to console device and basic /etc files, the only other file
is the helloworld binary, which contains everything our simple web application
needs to run on a modern Linux kernel, and hence from within a container.

In addition to the filesystem layers used by Docker, keeping your containers stripped
down to the bare necessities is another great way to keep your images slim and your
docker pull commands fast. It’s much harder to do with interpreted languages living
in a container. But the point is that you should try to keep as minimal a base layer as
needed so that you can reason about your dependencies. Docker helps you package
them up, but you still need to be in charge of them.
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Config
Store configuration in environment variables, not in files checked into the code base.

This makes it simple to deploy the exact same code base to different environments,
like staging and production, without maintaining complicated configuration in code
or rebuilding your container for each environment. This keeps your code base much
cleaner by keeping environment-specific information like database names and pass‐
words out of your source code repository. More importantly though, it means that
you don’t bake deployment environment assumptions into the repository, and
because of that it is extremely easy to deploy your applications anywhere that it might
be useful. You also need to be able to test the same image you will ship to production.
You can’t do that if you have to build an image for each environment with all of its
configuration baked in.

As discussed in Chapter 5, this can be achieved by launching docker run commands
that leverage the -e command-line argument. Using -e APP_ENV=production tells
Docker to set the environment variable APP_ENV to the value “production” within
the newly launched container.

For a real-world example, let’s assume we pulled the image for the chat robot hubot
with the HipChat adapter installed. We’d issue something like the following com‐
mand to get it running:

docker run \
  -e BIND_ADDRESS="0.0.0.0"
  -e ENVIRONMENT="development" \
  -e SERVICE_NAME="hubot" \
  -e SERVICE_ENV="development" \
  -e EXPRESS_USER="hubot" \
  -e EXPRESS_PASSWORD="Chd273gdExAmPl3wlkjdf" \
  -e PORT="8080" \
  -e HUBOT_ADAPTER="hipchat" \
  -e HUBOT_ALIAS="/" \
  -e HUBOT_NAME="hubot" \
  -e HUBOT_HIPCHAT_JID="someroom@chat.hipchat.com" \
  -e HUBOT_HIPCHAT_PASSWORD='SOMEEXAMPLE' \
  -e HUBOT_HIPCHAT_NAME="hubot" \
  -e HUBOT_HIPCHAT_ROOMS="anotherroom@conf.hipchat.com" \
  -e HUBOT_HIPCHAT_JOIN_ROOMS_ON_INVITE="true" \
  -e REDIS_URL="redis://redis:6379" \
  -d --restart="always" --name hubot hubot:latest

Here we are passing a whole set of environment variables into the container when it is
created. When the process is launched in the container, it will have access to these
environment variables so that it can properly configure itself at runtime. These con‐
figuration items are now an external dependency that we can inject at runtime.

The Twelve-Factor App | 179

https://www.hipchat.com/


In the case of a Node.js application like hubot, you could then write the following
code to make decisions based on these environment variables:

switch(process.env.ENVIRONMENT){
        case 'development':
            console.log('Running in development');

        case 'staging':
            console.log('Running in staging');

        case 'production':
            console.log('Running in production');

        default:
            console.log('Assuming that I am running in development');
    }

Keeping specific configuration information out of your source code makes it very
easy to deploy the exact same container to multiple environments, with no changes
and no sensitive information committed into your source code repository. Crucially,
it supports testing your container images thoroughly before deploying to production
by allowing the same image to be used in both environments.

Backing Services
Treat backing services as attached resources.

Local databases are no more reliable than third-party services, and should be treated
as such. Applications should handle the loss of an attached resource gracefully. By
implementing graceful degradation in your application and ensuring that you never
assume that any resource, including filesystem space, is available, your application
will continue to perform as many of its functions as it can, even when external
resources are unavailable.

This isn’t something that Docker helps you with directly, and although it is always a
good idea to write robust services, it is even more important when you are using con‐
tainers. High availability is most often achieved through horizontal scaling and roll‐
ing deployments when using containers, instead of relying on the live migration of
long-running process, like on traditional virtual machines. This means that specific
instances of a service will often come and go over time and your service should be
able to handle this gracefully.

Additionally, because Docker containers have limited filesystem resources, you can’t
simply rely on having some local disk available. You need to plan that into your appli‐
cation’s dependencies and handle it explicitly.
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Build, Release, Run
Strictly separate build and run stages.

Build the code, release it with the proper configuration, and then deploy it. This
ensures that you maintain control of the process and can perform any single step
without triggering the whole workflow. By ensuring that each of these steps are self-
contained in a distinct process, it allows you to tighten the feedback loop and react
more quickly to any problems within the deployment flow.

As you design your Docker workflow, you want to ensure that each step in the
deployment process is clearly separated. It is perfectly fine to have a single button,
that builds a container, tests it, and then deploys it, assuming that you trust your test‐
ing processes—but you don’t want to be forced to rebuild a container simply in order
to deploy it to another environment.

Docker supports the twelve-factor ideal well in this area because there is a clean
hand-off point between building an image and shipping it to production: the registry.
If your build process generates images and pushes them to the registry, then deploy‐
ment can simply be pulling the image down to servers and running it.

Processes
Execute the app as one or more stateless processes.

All shared data must be accessed via a stateful backing store, so that application
instances can easily be redeployed without losing any important session data. You
don’t want to keep critical state on disk in your ephemeral container, nor in the mem‐
ory of one of its processes. Containerized applications should always be considered
ephemeral. A truly dynamic container environment requires the ability to destroy
and recreate containers at a moment’s notice. This flexibility helps enable the rapid
deployment cycle and outage recovery demanded by modern, Agile workflows.

As much as possible, it is preferable to write applications that do not need to keep
state longer than the time required to process and respond to a single request. This
ensures that the impact of stopping any given container in your application pool is
very minimal. When you must maintain state, the best approach is to use a remote
datastore like Redis, PostgreSQL, Memcache, or even Amazon S3, depending on your
resiliency needs.

Port Binding
Export services via port binding.

Your application needs to be addressable by a port specific to itself. Applications
should bind directly to a port to expose the service and should not rely on an external
daemon like inetd to handle that for them. You should be certain that when you’re
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talking to that port, you’re talking to your application. Most modern web platforms
are quite capable of directly binding to a port and servicing their own requests.

Exposing a port from your container, as discussed in Chapter 4, can be achieved by
launching docker run commands that use the -p command-line argument. Using -p
80:8080 would tell Docker to proxy the container’s port 80 on the host’s port 8080.

The statically linked Go hello world container that we discussed in “Dependencies”
on page 176 is a great example of this because the container contains nothing but our
application to serve its content to a web browser. We did not need to include any
additional web servers, which would require additional configuration, add additional
complexity, and increase the number of potential failure points in our system.

Concurrency
Scale out via the process model.

Design for concurrency and horizontal scaling within your applications. Increasing
the resources of an existing instance can be difficult and hard to reverse. Adding and
removing instances as scale fluctuates is much easier and helps maintain flexibility in
the infrastructure. Launching another container on a new server is incredibly inex‐
pensive compared to the effort and expense required to add resources to an underly‐
ing virtual or physical system. Designing for horizontal scaling allows the platform to
react much faster to changes in resource requirements.

This is where tools like swarm, mesos, and kubernetes really begin to shine. Once you
have implemented a Docker cluster with a dynamic scheduler, it is very easy to add
three more instances of a container to the cluster as load increases, and then to later
remove two instances of your application from the cluster as load starts to decrease
again.

Disposability
Maximize robustness with fast startup and graceful shutdown.

Services should be designed to be ephemeral. We already talked a little bit about this
when talking about external state. But dynamic horizontal scaling, rolling deploys,
and responding to unexpected problems require applications that can quickly and
easily be started or shut down. Services should respond gracefully to a SIGTERM signal
from the operating system and even handle hard failures with aplomb. Most impor‐
tantly, we shouldn’t need to care if any given container for our application is up and
running. As long as requests are being served, the developer should be freed from
being concerned about the health of any given single component within the system. If
an individual node is behaving poorly, turning it off or redeploying it should be an
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easy decision that doesn’t entail long planning sessions and concerns about the health
of the rest of the cluster.

As discussed in Chapter 8, Docker sends standard Unix signals to containers when it
is stopping or killing them, therefore it is possible for any containerized application to
detect these signals and take the appropriate steps to shut down gracefully.

Development/Production Parity
Keep development, staging, and production as similar as possible.

The same processes and artifacts should be used to build, test, and deploy services
into all environments. The same people should do the work in all environments, and
the physical nature of the environments should be as similar as reasonably possible.
Repeatability is incredibly important. Almost any issue discovered in production
points to a failure in the process. Every area where production diverges from staging
is an area where risk is being introduced into the system. These inconsistencies
ensure that you are blind to certain types of issues that could occur in your produc‐
tion environment until it is too late to proactively deal with them.

In many ways, this repeats the essence of a few of the early recommendations. How‐
ever, the specific point here is that any environment divergence introduces risks, and
although these differences are common in many organizations, they are much less
necessary in a containerized environment. Docker servers can normally be created so
that they are identical in all of your environments and environment-based configura‐
tion changes, and should typically only affect which endpoints your service connects
to without specifically changing the applications behavior.

Logs
Treat logs as event streams.

Services should not concern themselves with routing or storing logs. Instead, events
should be streamed, unbuffered, to STDOUT for handling by the hosting process. In
development, STDOUT can be easily viewed, while in staging and production, the
stream can be routed to anything, including a central logging service. Different envi‐
ronments have different exceptions for log handling. This logic should never be hard-
coded into the application. By streaming everything to STDOUT, it is possible for the
top-level process manager to handle the logs via whichever method is best for the
environment, and this allows the application developer to focus on core functionality.

In Chapter 6, we discussed the docker logs command which collects the output
from your container’s STDOUT and records them as logs. If you write logs to random
files within the container’s filesystem, you will not have easy access to them. It is also
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possible to send logs to a local or remote logging system using things like rsyslog or
heka.

If you use a process manager or init system, like upstart, systemd, or supervisord
with the remote-logging plug-in, it is usually very easy to direct all process output to
STDOUT and then have your process monitor capture it and send it to a remote logging
host.

Admin Processes
Run admin/management tasks as one-off processes.

One-off administration tasks should be run via the exact same code base and configu‐
ration that the application uses. This helps avoid problems with synchronization and
code/schema drift problems. Oftentimes, management tools exist as one-off scripts or
live in a completely different code base. It is much safer to build management tools
within the application’s code base, and utilize the same libraries and functions to per‐
form required work. This can significantly improve the reliability of these tools by
ensuring that they leverage the same code paths that the application relies on to per‐
form its core functionality.

What this means is that you should never rely on random cron-like scripts to per‐
form administrative and maintenance functions. Instead, include all of these scripts
and functionality in your application code base. Assuming that these don’t need to be
run on every instance of your application, you can launch a special short-lived con‐
tainer whenever you need to run a maintenance job, which simply executes the one
job, reports its status somewhere, and then exits.

Twelve-Factor Wrap-Up
While it wasn’t written as a Docker-specific manifesto, almost all of this can be
applied to writing and deploying applications on a Docker platform. This is in part
because “The Twelve-Factor App” document heavily influenced the design of Docker,
and in part because the manifesto itself codified many of the best practices promoted
by modern software architects.

The Reactive Manifesto
Riding alongside “The Twelve-Factor App,” another pertinent document was released
in July of 2013 by Jonas Bonér, cofounder and CTO of Typesafe: “The Reactive Mani‐
festo.” Jonas originally worked with a small group of contributors to solidify a mani‐
festo that discusses how the expectations for application resiliency have evolved over
the last few years, and how applications should be engineered to react in a predictable
manner to various forms of interaction, including events, users, load, and failures.
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In the Manifesto, it states that “Reactive Systems” are responsive, resilient, elastic, and
message-driven.

Responsive
The system responds in a timely manner if at all possible.

In general, this means that the application should respond to requests very quickly.
User simply don’t want to wait, and there is almost never a good reason to make
them. If you have a containerized service that renders large PDF files, design it so that
it immediately responds with a job submitted message so that the user can go about
his day, and then provide a message or banner that informs the user when the job is
finished and where he can download the resulting PDF.

Resilient
The system stays responsive in the face of failure.

When your application fails for any reason, the situation will always be worse if the
application becomes unresponsive. It is much better to handle the failure gracefully,
and dynamically reduce the application’s functionality or even display a simple but
clear problem message to the user while reporting the issue internally.

Elastic
The system stays responsive under varying workload.

With Docker, this is achieved by dynamically deploying and decommissioning con‐
tainers as requirements and load fluctuate so that your application is always able to
handle server requests quickly, without deploying a lot of underutilized resources.

Message Driven
Reactive systems rely on asynchronous message-passing to establish a boundary between
components.

Although not directly addressed by Docker, the idea here is that there are times when
an application can become busy or unavailable. If you utilize asynchronous message-
passing between your services, you can help ensure that your service will not lose
requests and that these will be processed as soon as possible.

In Summary
All four of these design features require application developers to design graceful
degradation and a clear separation of responsibilities into their applications. By treat‐
ing all dependencies as attached resources, properly designed, dynamic container
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environments allow you to easily maintain n+2 status across your application stack,
reliably scale individual services in your environment, and quickly replace unhealthy
nodes.

The core ideas in “The Reactive Manifesto” merge very nicely with “The Twelve-
Factor App” and the Docker workflow. These documents successfully attempt to
frame many of the most important discussions about the way you need to think and
work if you want to be successful in meeting new expectations in the industry. The
Docker workflow provides a practical way to implement many of these ideas in any
organization in a completely approachable way.
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CHAPTER 12

Conclusion

We’ve had a pretty good tour through what Docker is and isn’t, and how it can benefit
you and your organization. We also mapped some of the common pitfalls. We have
tried to impart to you many of the small pieces of wisdom that we picked up from
running Docker in production. Our personal experience has shown that the promise
of Docker is realistically achievable, and we’ve seen significant benefits in our organi‐
zation as a result. Like other powerful technologies, Docker is not without its down‐
sides, but the net result has been a big positive for us, our teams, and our
organization. If you implement the Docker workflow and integrate it into the pro‐
cesses you already have in your organization, there is every reason to believe that you
can benefit from it as well. So let’s quickly review the problems that Docker is
designed to help you solve and some of the power it brings to the table.

The Challenges
In traditional deployment workflows, there are all manner of required steps that sig‐
nificantly contribute to the overall pain felt by teams. Every step you add to the
deployment process for an application increases the overall risk inherent in shipping
it to production. Docker combines a workflow with a simple tool set that is targeted
squarely at addressing these concerns. Along the way, it aims your development pro‐
cess toward some industry best practices, and its opinionated approach leads to better
communication and more robustly crafted applications. Some of the specific prob‐
lems that Docker can help mitigate include:

• Outdated build and release processes that require multiple levels of handoff
between development and operations teams.
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• The giant build-deploy step required by many frontend sites that require asset
compilation, or dynamic languages that need dependencies to be assembled
together.

• Divergent dependency versions required by applications that need to share the
same hardware.

• Managing multiple Linux distributions in the same organization.
• Building one-off deployment processes for each application you put into produc‐

tion.
• The constant need to patch dependencies for security vulnerabilities while run‐

ning your application in production.

By using the registry as a handoff point, Docker eases and simplifies communication
between operations and development teams, or between multiple development teams
on the same project. By bundling all of the dependencies for an application into one
shipping artifact, Docker eliminates concerns about which Linux distrubition devel‐
opers want to work on, which versions of libraries they need to use, and how they
compile their assets or bundle their software. It isolates operations teams from the
build process and puts developers in charge of their dependencies.

The Docker Workflow
Docker’s workflow helps organizations tackle really hard problems—some of the
same problems that DevOps processes are aimed at solving. A major problem in
incorporating DevOps successfully into a company’s processes is that many people
have no idea where to start. Tools are often incorrectly presented as the solution to
what are fundamentally process problems. Adding virtualization, automated testing,
deployment tools, or configuration management suites to the environment often just
changes the nature of the problem without delivering a resolution.

It would be easy to dismiss Docker as just another tool making unfulfillable promises
about fixing your business processes, but that would be selling it short. Where Dock‐
er’s power meets the road is in the way that its natural workflow allows applications to
travel through their whole life cycle, from conception to retirement, within one eco‐
system. That workflow is often opinionated, but it follows a path that simplifies the
adoption of some of the core principles of DevOps. It encourages development teams
to understand the whole life cycle of their application, and allows operations teams to
support a much wider variety of applications on the same runtime environment. And
that delivers value across the board.
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Minimizing Deployment Artifacts
Docker alleviates the pain induced by sprawling deployment artifacts. It does this by
defining the result of a build as a single artifact, the Docker image, which contains
everything your Linux application requires to run, and it executes it within a pro‐
tected runtime environment. Containers can then be easily deployed on modern
Linux distributions. But because of the clean split between Docker client and server,
developers can build their applications on non-Linux systems and still participate in
the Linux container environment remotely.

Leveraging Docker allows software developers to create Docker images that, starting
with the very first proof of concept release, can be run locally, tested with automated
tools, and deployed into integration or production environments without ever
rebuilding them. This ensures that the application will run in production in the exact
same environment in which it was built and tested. Nothing needs to be recompiled
or repackaged during the deployment workflow, which significantly lowers the nor‐
mal risks inherent in most deployment processes. It also means that a single build
step replaces a typically error-prone process that involves compiling and packaging
multiple complex components for distribution.

Docker images also simplify the installation and configuration of an application by
ensuring that every single piece of software that an application requires to run on a
modern Linux kernel is contained in the image, with nothing else that might cause
dependency conflicts in many environments. This makes it trivial to run multiple
applications that rely on different versions of core system software on the exact same
server.

Optimizing Storage and Retrieval
Docker leverages filesystem layers to allow containers to be built from a composite of
multiple images. This shaves a vast amount of time and effort off of many deploy‐
ment processes by shipping only significant changes across the wire. It also saves con‐
siderable disk space by allowing multiple containers to be based on the same lower-
level OS image, and then utilizing a copy-on-write process to write new or modified
files into a top layer. This also helps in scaling an application by simply starting more
copies on the same servers without the need to push it across the wire for each new
instance.

To support image retrieval, Docker leverages the image registry for hosting images.
While not revolutionary on the face of it, the registry actually helps split team
responsibilities clearly along the lines embraced by DevOps principles. Developers
can build their application, test it, ship the final image to the registry, and deploy the
image to the production environment, while the operations team can focus on build‐
ing excellent deployment and cluster management tooling that pulls from the regis‐
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try, runs reliably, and ensures environmental health. Operations teams can provide
feedback to developers and see it tested at build time rather than waiting to find
problems when the application is shipped to production. This enables both teams to
focus on what they do best without a multiphased handoff process.

The Payoff
As teams become more confident with Docker and its workflow, the realization often
dawns that containers create an incredibly powerful abstraction layer between all of
their software components and the underlying operating system. Done correctly,
organizations can begin to move away from the legacy need to create custom physical
servers or virtual machines for most applications, and instead deploy fleets of identi‐
cal Docker hosts that can then be used as a large pool of resources to dynamically
deploy their applications to, with an ease that was never before so smooth.

When these process changes are successful, the cultural impact within a software
engineering organization can be dramatic. Developers gain more ownership of their
complete application stack, including many of the smallest details, which would typi‐
cally be handled by a completely different group. Operations teams are simultane‐
ously freed from trying to package and deploy complicated dependency trees with
little or no detailed knowledge of the application.

In a well-designed Docker workflow, developers compile and package the application,
which makes it much easier to become more operationally focused and ensure that
their application is running properly in all environments, without being concerned
about significant changes introduced to the application environment by the opera‐
tions teams. At the same time, operations teams are freed from spending most of
their time supporting the application and can focus on creating a robust and stable
platform for the application to run on. This dynamic creates a very healthy environ‐
ment where teams have clearer ownership and responsibilities in the application
delivery process, and friction between the teams is significantly decreased.

Getting the process right has a huge benefit to both the company and the customers.
With organizational friction removed, software quality is improved, processes are
streamlined, and code ships to production faster. This all helps free the organization
to spend more time providing a satisfying customer experience and delivering
directly to the broader business objectives. A well-implemented Docker-based work‐
flow can greatly help organizations achieve those goals.

The Final Word
You are now armed with knowledge that we hope can help you with the process of
getting Docker into production. We encourage you to experiment with Docker on a
small scale on your laptop or in a VM to develop a strong understanding of how all of
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the pieces fit together, and then consider how you might begin to implement it your‐
self. Every organization or individual developer will follow a different path deter‐
mined by their own needs and competencies. If you’re looking for guidance on how
to start, we’ve found success in tackling the deployment problem first with simpler
tools, and then moving on to things like service discovery and distributed scheduling.
Docker can be made as complicated as you like, but as with anything, starting simple
usually pays off.

We hope you can now go forth with the knowledge we’ve imparted and make good
on some of the promise for yourself.
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