
Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

Session 1532

Parallel-to-Serial and Serial-to-Parallel Converters

Max Rabiee, Ph.D., P.E.
University of Cincinnati

Abstract:

Microprocessors (MPUs) on a computer motherboard communicate in a parallel format with the
memory system and support chips. The memory system consists of Read Only Memory (ROM), and
Random Access Memory (RAM). The 8255 Programmable Peripheral Interface (PPI) is an example
of such a support chip [1]. Microprocessors (MPUs) communicate in a serial format with outside
peripheral devices. Serial-to-parallel and parallel-to-serial conversion must be performed to establish
this communication. A few examples of outside computer peripheral devices are the modem, the printer,
and the CRT terminal. In parallel communication format, all data bits are transferred at the same time
through a computer data bus, while in serial communication, bits are transferred through one data line in
a pulse format. Parallel data must be converted to serial data form prior to transmission to the outside
peripheral device(s). The serial data received by the computer from an outside peripheral device must
be converted back to a parallel format and then placed on the computer data bus [2]. The parallel data
on the computer data-bus is represented by either zero or five volts (0V or 5V). However, the serial
data, which is transmitted outside the computer, must be set to an industry standard voltage/current
level. These standards are designed to insure that the transmitted data is immune to outside
electromechanical and electromagnetic noise interference.

In this paper, we will describe the terms used in serial communication systems. Then, we will describe
a project in which a digital circuit is designed to convert the parallel data to serial format. Application
specific chips are available to perform the task of parallel-to-serial and serial-to- parallel conversion.
One example of such an application specific chip, is the INTEL 8251A [1], which is a Universal
Synchronous/Asynchronous Receiver/Transmitter (USART) chip. This chip can be programmed to
convert parallel data to serial and vice versa. It can also be programmed to either transmit or receive
data in asynchronous or synchronous forms. If the 8251A is programmed for asynchronous
transmission, its framed data words must have at least one start bit, or possibly a one and a half, or two
stop bits. In addition, the framed data words may be set to include parity bits. The 8251A is also
programmed to set the serial data transmission speed rate in bits per second.

P
age 7.910.1

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

Semiconductor chips similar to the INTEL 8251A are utilized by the computer motherboard to convert,
receive, and transmit data for the microprocessor. We will also describe one of the popular serial
communication standard that is utilized in industry. This serial communication protocol is used to protect
the serial data from distortion due to outside electrical noise pollution.
Students in a microprocessor interfacing class will learn how to program the 8251A chip and similar
types of chips [2]. However, projects that encourage the students to design and build a data
transmission system will motivate them to enjoy programming the microprocessor and its peripheral
chips. The project in this paper will familiarize students with the integral working structure of chips that
are used for parallel-to-serial conversions.

Introduction:

Within a computer system, microprocessors communicate in a parallel format with their support chips
(e.g., ROM, RAM, etc.). Outside devices, such as modems and printers are serial devices. Therefore,
serial-to-parallel and parallel-to-serial conversion must be accomplished.

A typical 7-bit, ASCII (American Standard Code for Information Interchange) character, such as "E"
could be transmitted in the asynchronous serial form displayed in Figure 1[2].

 Start D0 D1 D2 D3 D4 D5 D6 Parity Stop Stop
 Mark

 Space
 0 1 0 1 0 0 0 1 1 1 1

Figure 1- Seven-bit Framed ASCII Serial Word for the Letter “E”

In asynchronous communication there is no common clock between the transmitter and receiver. While
for synchronous communication there must be a common clock connection between the transmitter and
receiver. In synchronous transmission, after transmission of a few start bit signals, data is transferred
continuously.

Asynchronous communication is used more often than synchronous communication. In asynchronous

P
age 7.910.2

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

communication, Start and Stop bits must be added to the ASCII (American Standard Code for
Information Interchange) data prior to transmission. One (1), one and half (1.5), or two (2) high pulses
indicate the termination of word transmission. Sometimes a parity bit is also added to the data for
utilizing the parity check process. Adding start, stop, and parity bits to the ASCII data is called
“framing” the data. The transmitter will frame the ASCII word prior to transmission. The receiver will
strip the frame bits (i.e., start, stop and parity bits), and save the ASCII word.

A parity check can be used to detect the loss of one bit during the transmission. If the number of high
bits in the transmitted word is even, the word has EVEN parity. If the number of high bits in the
transmitted word is odd, the word has ODD parity. Prior to transmission, the communication system is
set for EVEN, ODD, or NO parity check. Parity bit is used to set the number of high bits to even or
odd for the transmitted word. Then, the receiver will check to see if the parity setting is correct. Note
that in serial communication, the term “mark” indicates logic one (1) and the term “space” indicates
logic zero (0). A low bit indicates the start of data transmission. The transmitted word displayed in
Figure 1 has a one start bit (one Mark), and two stop bits (two Space). This transmitted word, has
been set for EVEN Parity.

Devices that are used to send or receive serial data (e.g., modem) are called Data Communication
Equipment (DCE). The terminals or computers that are sending or receiving data are refereed to as
Data Terminal Equipment (DTE). In a Simplex communication system, data is transmitted in only one
direction. This means that data can either flow from the Data Communication Equipment (DCE) to
Data Terminal Equipment (DTE) or vice versa. In a Half Duplex communication system data can be
transmitted in both directions but not at the same time. This means that data can flow from the DTE to
the DCE or vise versa but not simultaneously. In a Full Duplex communication system data can be
transmitted in both directions simultaneously. This means that both the DTE and the DCE can transmit
and receive at the same time.

Parallel-to-serial and serial-to-parallel conversions at the TTL (Transistor -Transistor Logic) level are
carried out by support chips such as the 8251A. In the Transistor -Transistor Logic (TTL), the low
level logic is between approximately 0 to 1.5V, while the high level logic ranges between 4.5V to 5.5V.
 There are three types of serial-to-parallel/parallel-to-serial converter chips; (1) Universal Synchronous
Receiver/Transmitter (USRT), (2) Universal Asynchronous Receiver/Transmitter (UART), and (3)
Universal Synchronous/Asynchronous Receiver/Transmitter (USART). The 8251A is a USART and is
capable of Full Duplex communication.

Serial data in the TTL (Transistor / Transistor Logic) level cannot be transmitted due to the transmission
line's capacitance. Transmission line capacitance will cause digital signals to be distorted. The
Electronic Industrial Association (EIA) has set the standard for a RS232C (Recommended Standard
232C) plug compatibility between equipment made by different manufacturers. In the RS232 standard,
logic zero (0) is represented by voltage between +3V and +25V, while logic one (1) can be anywhere

P
age 7.910.3

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

between -3V and -25V. Most RS232C microcomputer interfaces use +12V or +15V to represent a
logic zero, and -12V or -15V to represent logic one level. Chips are available for conversion of data
from the TTL level to the RS232 standard level and vice versa. For example, the MC1488
manufactured by the Motorola Company can be used to convert TTL to RS-232C. Also, a MC1489
is used to convert RS-232C to TTL [3].

In the following sections a system is described that uses a computer to convert parallel data to framed
serial words. Then, the framed words are transmitted in an asynchronous communication protocol
format. The system in this project is a Simplex Communication system. We will first describe the
system hardware, and then we will describe the system software.

System Hardware:

Figure 2 displays the schematic diagram of a circuit for converting eight-bit parallel data to a framed
serial word. The framed word is transmitted by the asynchronous serial communication system. A
74LS245 Octal Transceiver is connected to an eight-bit Dip Switch. The switch is used to set one
byte of parallel data for the system. The 74LS245 Octal Transceiver chip is used to transfer the data
into a IBM compatible personal computer (PC) via a PC Interface card. The Octal Transceiver will
act as a buffer to hold the data for the computer’s microprocessor unit (MPU). When the MPU is
ready to read the data, it will read the output of the 74LS245 chip.

P
age 7.910.4

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

Address
Decoder
Circuit

CE

B7-B0

DIR+5 V

D7 - D0

74LS245

Y0

8

10

PC Interface
Card Connected

A9 - A0
3

IOR, IOW & AEN

1

BEN

74LS373
Y1

LE

To The Computer

D7 - D0
Q8

A7

A0 S0

S7

+5 V

1K

1K

100 Ohm

Figure 2- Schematic Block Diagram of the System

The software routine within the computer contains instructions that will frame the parallel data for
asynchronous serial transmission. Then the framed serial word is transmitted through the most significant
bit (MSB) of the 74LS373 Octal Latch. The 74LS373 latch will hold the transmitted pulse that is
displayed on the light emitting diode (LED). A one hundred-ohm resistor is used as a current limiting
device so that the output of the 74LS373 chip is not over- loaded. Note that the 74LS373 Octal Latch
is also connected to the personal computer via a PC Interface card.

Figure 3 illustrates the pin-out diagram of a PC-Interface card. This card can be placed in a 32-pin
Industry Standard Association (ISA) port of an IBM compatible personal computer. The PC-Interface
card can be purchased through the Electronic Industries Association (EIA) [4].

P
age 7.910.5

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

14

15

16

17

18

19

20

21

22

23

24

25

1

2

3

4

5

6

7

8

9

10

11

12

13

AEN

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

Vcc

GND

IOR

BEN

D0

D1

D2

D3

D4

D5

D6

D7

IRQ

IOW

Figure 3 Pin-out Diagram of the PC Interface Card

The PC Interface card will enable us to access eight (8) computer data lines (D7-D0), ten (10) address
lines (A9-A0), five control lines, and the five volt computer’s power supply (+5 V) and ground (GND).
 The five-volt (+5V) supply can be used to power the external digital circuit that is connected to the
computer via the PC interface card. The control lines consist of Input/Output Read and Write
(IOR/IOW), valid Address Enable (AEN), valid data Bus Enable (BEN), and Interrupt Request (IRQ)
lines. In the following section we will describe the System Hardware and its connections to the
computer.

An address decoder circuit enables the computer to read from, and write to, various peripheral devices.
 The address decoder actually performs two functions; (1) to connect a decoder device to the data
bus, and (2) to make sure only one device is enabled at a time. On most personal computers the
address range 300 Hex-to-31F Hex is available for external use. The decoder circuit displayed in
Figure 4 was built using Transistor-Transistor Logic (TTL) gates.

P
age 7.910.6

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

A0

A1
A2

Figure 4 Address Decoder Circuit

The decoder circuit displayed in Figure 4 will generate chip-enable signals for the address range 300H
through 307H. Decimal values for these decoded addresses are 768, 769, 770, 771, 772, 773, 774
and 775. Figure 2 displays a circuit used to decode the 74LS245 Octal Transceiver chip and the
74LS373 Octal Latch for addresses 768 (300 Hex) and 769 (301H), respectively.

Five (5) address lines (A5, A6, A7, A8 and A9), and three (3) control lines (IOR, IOW and AEN) are
used in the address decoder circuit. The output of the decoder circuit is connected to the Bus Enable
(BEN’) pin of the PC interfacing card, and the Chip Enable (CE’) pin on the 74LS245 Octal Buffer
chip.

Table 1 shows the address map of the decoder circuit. If we utilize four (4) 74LS138 (three-to-eight)
decoders, this address decoder map can have up to thirty-two (32) addresses, starting with decimal
numbers 768 up to 799. This will allow the computer to decode thirty-two (32) different addresses.

A11 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0A15 A14 A13 A12 A10 HEX Address Range
0 0 0 0 X 0300h TO 031Fh0 0 1 1 00 0 X

Table 1. The Address Decoder Map

P
age 7.910.7

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

Appendix A contains the thirty-two (32) decoded blocks of addresses. However, in the circuit
displayed in Figure 4, we have utilized only one (1) 74LS138 chip. Therefore, the computer can
communicate with eight (8) different peripheral devices.

System Software:

An eight-bit Dip Switch is used to generate a random one-byte number. The computer thru the
74LS245 buffer reads this one-byte data that is in parallel data format. Then, the program in the
computer is used to convert the data to serial form and frame it for asynchronous transmission. The
program will also set the transmission Baud Rate. Baud Rate is the number of pulses traveling per
second though the transmission line. The transmission line is connected to the Most Significant Bit
(MSB) output pin (Q8) of the 74LS373 Latch. Once the parallel data is converted to serial form and
framed for transmission, it will be transmitted at the set Baud Rate. The light emitting diode (LED) on
the transmission line is utilized to show the transmitted serial bits.

The program for this project is a “software driver” that binds the computer and the external system
hardware. Figure 5 displays the schematic diagram of the system software. The program code in
Quick Basic (Q-Basic) language is listed in Appendix A, and the program code in C language is listed in
Appendix B. Therefore, this project can be assigned to students that have not taken high-level
computer programming language classes as well as those upper class students who have taken high-
level courses.

The computer screen is cleared and then a low bit is sent to the output port address 769 to signal the
start of data transmission. Note that output port 769 is connected to the light emitting diode (LED).
Next, the parallel data is read from the Dip-Switch setting from input port address 768. Then, compare
functions are used to see which bits in the one-byte parallel data are high. Once the status of a bit is
determined, the high or low pulse for each bit is sent to the output port address 769. These actions are
followed by executions of software delay routines.

When all eight bits in the parallel data are converted to serial format and transmitted, two stop bits will
be sent to output port 769. Since the stop bits are high pulses, the light emitting diode (LED) is
normally ON. A low pulse will turn the LED off to signal the start of data transmission. This is followed
by eight (8) high and/or low pulses that form a one-byte (8-bit) data. Finally, two high pulses will signal
the end of the data transmission. The data in this example is framed to have one start bit, eight data bits,
no parity bit, and two stop bits.

P
age 7.910.8

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

Read the Parallel Data from Port

 Start

 Clear the Screen

Output Zero to Port 769 Execute the Delay
Routine

Is Data > or = 128

 B7 = 0

YES

NO B7 = 1

Output Zero to Port 769
Execute the Delay

 Data= Data –B7

Is Data > or = 64

 B6 = 0

YES

NO B6 = 1

 Data= Data –B6

Output One to Port 769
Execute the Delay

Output Zero to Port 769
Execute the Delay

Output One to Port 769
Execute the Delay

Is Data > or = 1 ?
YES

NO

 End

Output Zero to Port 769
Execute the Delay

Output One to Port 769
Execute the Delay

Output One to Port 769
Execute the Delay

Output One to Port 769
Execute the Delay

P
age 7.910.9

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

Figure 5- The Program Flow Chart

Conclusion:

This project allowed students to be involved in the design and development of digital circuits. They
learned how to interface an outside digital circuit to a microprocessor in a personal computer. They
also wrote a program that was a software driver for communication between a microprocessor and it’s
circuit.

Students involved in this project learned in detail the concept of parallel to serial conversion. A project
that will read the serial data and convert it to parallel data can also be very beneficial in teaching
students the concept of serial to parallel conversion. A similar project could be used to motivate
students to explore in detail microprocessor hardware and software engineering. Note that the
components utilized for this project are reasonable in cost and available in the commercial market.
Therefore, the logistics of supervising the development of projects similar to the one presented in this
paper are not costly. However, the level of student participation is high, and the project teamwork will
teach students how to interact with hardware and software engineers.

P
age 7.910.10

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

Appendix A:

Decoded Block Addresses;

AEN IOR IOW A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 ADDRESSES
0 0 0 1 1 0 0 0 0 0 0 0 0 300H = 768
0 0 0 1 1 0 0 0 0 0 0 0 1 301H = 769
0 0 0 1 1 0 0 0 0 0 0 1 0 302H = 770
0 0 0 1 1 0 0 0 0 0 0 1 1 303H = 771
0 0 0 1 1 0 0 0 0 0 1 0 0 304H = 772
0 0 0 1 1 0 0 0 0 0 1 0 1 305H = 773
0 0 0 1 1 0 0 0 0 0 1 1 0 306H = 774
0 0 0 1 1 0 0 0 0 0 1 1 1 307H = 775
0 0 0 1 1 0 0 0 0 1 0 0 0 308H = 776
0 0 0 1 1 0 0 0 0 1 0 0 1 309H = 777
0 0 0 1 1 0 0 0 0 1 0 1 0 30AH = 778
0 0 0 1 1 0 0 0 0 1 0 1 1 30BH = 779
0 0 0 1 1 0 0 0 0 1 1 0 0 30CH = 780
0 0 0 1 1 0 0 0 0 1 1 0 1 30DH = 781
0 0 0 1 1 0 0 0 0 1 1 1 0 30EH = 782
0 0 0 1 1 0 0 0 0 1 1 1 1 30FH = 783
0 0 0 1 1 0 0 0 1 0 0 0 0 310H = 784
0 0 0 1 1 0 0 0 1 0 0 0 1 311H = 785
0 0 0 1 1 0 0 0 1 0 0 1 0 312H = 786
0 0 0 1 1 0 0 0 1 0 0 1 1 313H = 787
0 0 0 1 1 0 0 0 1 0 1 0 0 314H = 788
0 0 0 1 1 0 0 0 1 0 1 0 1 315H = 789
0 0 0 1 1 0 0 0 1 0 1 1 0 316H = 790
0 0 0 1 1 0 0 0 1 0 1 1 1 317H = 791
0 0 0 1 1 0 0 0 1 1 0 0 0 318H = 792
0 0 0 1 1 0 0 0 1 1 0 0 1 319H = 793
0 0 0 1 1 0 0 0 1 1 0 1 0 31AH = 794
0 0 0 1 1 0 0 0 1 1 0 1 1 31BH = 795
0 0 0 1 1 0 0 0 1 1 1 0 0 31CH = 796
0 0 0 1 1 0 0 0 1 1 1 0 1 31DH = 797
0 0 0 1 1 0 0 0 1 1 1 1 0 31EH = 798
0 0 0 1 1 0 0 0 1 1 1 1 1 31FH = 799

P
age 7.910.11

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

Appendix B:
The Program Code in Q-Basic Language;
10 CLS
15 OUT 769, 0
16 FOR T = 1 TO 1000: NEXT T
20 D = INP(768)
30 IF D > 128 OR D = 128 THEN B7 = 128 ELSE B7 = 0
40 IF B7 > 0 THEN OUT 769, 128 ELSE OUT 769, 0
50 FOR T = 1 TO 1000: NEXT T
60 D = D - B7
70 IF D > 64 OR D = 64 THEN B6 = 64 ELSE B6 = 0
80 IF B6 > 0 THEN OUT 769, 128 ELSE OUT 769, 0
90 FOR T = 1 TO 1000: NEXT T
100 D = D - B6
110 IF D > 32 OR D = 32 THEN B5 = 32 ELSE B5 = 0
120 IF B5 > 0 THEN OUT 769, 128 ELSE OUT 769, 0
125 FOR T = 1 TO 1000: NEXT T
130 D = D - B5
140 IF D > 16 OR D = 16 THEN B4 = 16 ELSE B4 = 0
150 IF B4 > 0 THEN OUT 769, 128 ELSE OUT 769, 0
160 FOR T = 1 TO 1000: NEXT T
170 D = D - B4
180 IF D > 8 OR D = 8 THEN B3 = 8 ELSE B3 = 0
190 IF B3 > 0 THEN OUT 769, 128 ELSE OUT 769, 0
200 FOR T = 1 TO 1000: NEXT T
210 D = D - B3
220 IF D > 4 OR D = 4 THEN B2 = 4 ELSE B2 = 0
230 IF B2 > 0 THEN OUT 769, 128 ELSE OUT 769, 0
240 FOR T = 1 TO 1000: NEXT T
250 D = D - B2
260 IF D2 OR D = 2 THEN B1 = 2 ELSE B1 = 0
270 IF B1 > 0 THEN OUT 769, 128 ELSE OUT 769, 0
280 FOR T = 1 TO 1000: NEXT T
290 D = D - B1
300 IF D = 1 THEN B0 = 1 ELSE B0 = 0
310 IF B0 > 0 THEN OUT 769, 128 ELSE OUT 769, 0
320 FOR T = 1 TO 1000: NEXT T

P
age 7.910.12

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

330 OUT 769, 1
340 FOR T = 1 TO 100: NEXT T
350 OUT 769, 1
360 FOR T = 1 TO 1000: NEXT T
370 PRINT B7, B6, B5, B4, B3, B2, B1, B0
390 END
Appendix C:
The Program Code in C Language;

/* This program will convert the Parallel data to a Serial format then transmit it. */
#include <stdio.h>
int t=500;
int d;
int set[8];
int on = 128;
int off = 0;
int main()
{
_outb(0,769);
for (t; t>0; t--);

d=_inb(768);
if (d>=128)
{
 set[1]=128;
}
else
{
 set[1]=0;
}
if (set[1]>0)
{
_outb(on,769);
}
else
{
_outb(off,769);
}
for (t; t>0; t--);
d=d - set[1];

P
age 7.910.13

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

if (d>=64)
{
 set[2]=64;
}
else
{
 set[2]=0;
}

if (set[2]>0)
{
 _outb(on,769);
}
else
{
 _outb(off,769);
}
for (t; t>0; t--);
d=d - set[2];
if (d>=32)
{
 set[3]=32;
}
else
{
 set[3]=0;
}
if (set[3]>0)
{
 _outb(on,769);
}
else
{
 _outb(off,769);
}
for (t; t>0; t--);
d=d - set[3];
if (d>=16)
{
 set[4]=16;

P
age 7.910.14

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

}
else
{
 set[4]=0;
}
if (set[4]>0)
{
 _outb(on,769);
}
else
{

_outb(off,769);
}
for (t; t>0; t--);
d=d - set[4];
if (d>=8)
{
 set[5]=8;
}
else
{
 set[5]=0;
}
if (set[5]>0)
{
 _outb(on,769);
}
else
{
 _outb(off,769);
}
for (t; t>0; t--);
d=d - set[5];
if (d>=4)
{
 set[6]=4;
}
else
{

P
age 7.910.15

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

 set[6]=0;
}
if (set[6]>0)
{
 _outb(on,769);
}
else
{
 _outb(off,769);
}
for (t; t>0; t--);
d=d - set[6];
if (d>=2)
{

 set[7]=2;
}
else
{
 set[7]=0;
}
if (set[7]>0)
{
 _outb(on,769);
}
else
{
 _outb(off,769);
}
for (t; t>0; t--);
d=d - set[7];
if (d>=1)
{
 set[8]=1;
}
else
{
 set[8]=0;
}
if (set[8]>0)

P
age 7.910.16

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

{
 _outb(on,769);
}
else
{
 _outb(off,769);
}
for (t; t>0; t--);

_outb(on,769);
for (t; t>0; t--);
_outb(on,769);
for (t; t>0; t--);

printf("%d %d %d %d %d %d %d %d",set[1],set[2],set[3],set[4],set[5],set[6],set[7],set[8]);
}

References:

1. Intel Peripheral Components, Intel Literature Sales, Mt. Prospect, Illinois

2. M. Mazidi and J. Mazidi , 80X86 IBM PC and Compatible Computers: Design and Interfacing of

IBM PC, PS and Compatible Computers, Volume II, Third Edition, Prentice-Hall, 2000

3. Motorola Literature Distribution; P.O. Box 20291; Phoenix, Arizona 85036

4. Electronic Industries Association (EIA), Consumer Electronic Group, Washington, D.C.

Max Rabiee earned his Ph.D. in Electrical Engineering from the University of Kentucky in 1987. He is an Associate
Professor of Electrical and Computer Engineering Technology at the University of Cincinnati. Dr. Rabiee is a
registered professional engineer, and a member of the American Society of Engineering Education (ASEE), the
Institute of Electrical and Electronic Engineering (IEEE), the National Association of Industrial Technology (NAIT),
the Eta Kappa Nu Electrical Engineering Honor Society and the Tau Beta Pi Engineering Honor Society.

P
age 7.910.17

