
## Fuel surcharge practices of container shipping lines: Is it about cost recovery or revenue-making





# Fuel surcharge practices of container shipping lines: Is it about cost recovery or revenue-making?

### Theo Notteboom

ITMMA - University of Antwerp and Antwerp Maritime Academy, Belgium theo.notteboom@ua.ac.be

### Pierre Cariou

World Maritime University, Malmo - Sweden pierre.cariou@wmu.se

IAME 2009 conference Copenhagen, 24-26 June 2009



## Theme setting

- Focus of the paper: container shipping lines' practices of levying fuel surcharges (BAF) on shippers.
- Diverging views:
  - Shipping lines: argue that the increase in bunker prices, especially in the short term, is only partially compensated through surcharges to the freight rates.
  - Shippers: the way BAFs are determined is opaque, without uniformity, and involves a significant element of revenue-making.
- End of liner conferences: new methods for calculating fuel surcharges



## Research questions

### Objective of paper:

- To analyse relationship between fuel costs fluctuations and fuel surcharging practices.

### Research questions:

- How have shipping lines changed their practices regarding BAF, considering the end of the liner conference era in Europe?
- How can bunker costs be estimated for a specific service?
- Can it be concluded, as stated by shippers, that BAFs are used by shipping lines to generate additional revenue or are they only, as stated by shipowners, used to recover bunker costs and to cope with their unexpected fluctuations?





## Structure of the paper

- 1. Viewpoints of shippers and shipping lines
- 2. Past and current practices of fuel surcharges.
- 3. Model aiming at calculating the bunker cost for a specific service.
- Application: comparison of estimates on fuel costs with the observed BAFs on a set of port-to-port liner services
- 5. Conclusions and avenues for further research.



## Structure of the paper

- 1. Viewpoints of shippers and shipping lines
- 2. Past and current practices of fuel surcharges.
- 3. Model aiming at calculating the bunker cost for a specific service.
- Application: comparison of estimates on fuel costs with the observed BAFs on a set of port-to-port liner services
- 5. Conclusions and avenues for further research.



# The principle of the Bunker Adjustment Factor (BAF)

- BAF: introduced in 1974 following the first oil crisis
- Surcharges were jointly fixed by conference members and abided by outside operators as well.
- Principle: carriers cover basic bunker costs, while BAFs only apply to changes above a certain level.

| IFO 380 price level | BAF       | IFO 380 price level | BAF       |
|---------------------|-----------|---------------------|-----------|
| (euro per ton)      | surcharge | (euro per ton)      | surcharge |
| 140 (Base level)    | 2.00%     | 216-220             | 6.50%     |
| 141-155             | 2.50%     | 221-230             | 7.50%     |
| 156-165             | 3.00%     | 231-240             | 8.00%     |
| 166-180             | 3.50%     | 241-250             | 8.50%     |
| 181-190             | 4.50%     | 251-255             | 9.00%     |
| 191-200             | 5.00%     | 256-265             | 9.50%     |
| 201-205             | 5.50%     | 266-279             | 10.50%    |
| 206-215             | 6.00%     | 271-280             | 11.00%    |





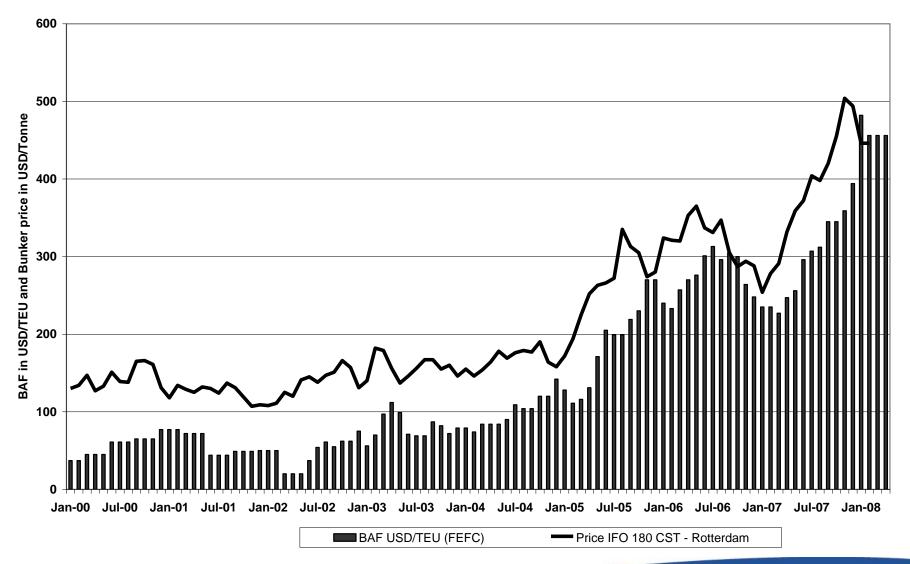
### The controversy surrounding BAF

Source of contention in shipping circles.

'Shippers do not accept the ocean carriers' claim that they operate in a unique environment and they are a special case deserving special protection from market forces. Shippers face similar business risk when trading in global markets; they are unable to pass on additional costs incurred through the use of surcharges. [..]

The absence of transparency in the imposition of surcharges has led shippers to call for their abolition. The method by which surcharges are calculated is complex and because of averaging of surcharges within a conference, surcharges are unrelated to the actual costs experienced by individual shipowners. Surcharges are used as a means of obtaining additional revenues.'

(ESC, 2003: 20).




# The controversy surrounding BAF: some results from previous studies

- Meyrick (2008) for European Shippers' Council (ESC)
  - BAFs were found to be higher than actual fuel costs in some cases.
  - BAF applied by the FEFC and TACA in early 2008 involves a significant element of revenue-making.
  - Shippers are being overcharged when it comes to fuel surcharges set by liner conferences.
- Cariou and Wolff (2006)
  - An increase in fuel price by 1 would lead to an increase in BAF by 1.5.



# Bunker price in Rotterdam (US\$ per ton) and FEFC's BAF (US\$ per TEU)





# Fuel charge practices after the liner conference era

- October 18, 2008: liner shipping conferences outlawed in Europe
- Container shipping lines calling at European ports were banned from discussing freight rates and other additional surcharges such as bunker surcharges
- Disappearance of liner conferences coincided with a period of declining traffic and tumbling freight rates
- Each carrier came with its own decisions on whether or not to charge a BAF and if so, on how the calculation method and resulting quantum will be.
  - Many factors included (bunker price, vessel type, distance, load factor, vessel speed, etc..)
  - Shipping lines argue BAF is now much closer related to actual fuel costs
  - All-in prices apply on a number of routes





# Impact of crisis on pricing strategy of shipping lines

Table: Base freight rate and BAF for the maritime transport of one forty foot container (FEU) from Shanghai to Antwerp

|                                                                     | Typical freight rate                                                         | Typical BAF                             |
|---------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------|
| Q1 2007<br>Q2 2008<br>September 2008<br>February 2009<br>April 2009 | 2100 US\$<br>1400 US\$<br>700 US\$<br>250 US\$ (all in)<br>550 US\$ (all in) | 235 US\$<br>1242 US\$<br>1440 US\$<br>- |

Source: based on market figures



## Structure of the paper

- 1. Viewpoints of shippers and shipping lines
- 2. Past and current practices of fuel surcharges.
- 3. Model aiming at calculating the bunker cost for a specific service.
- Application: comparison of estimates on fuel costs with the observed BAFs on a set of port-to-port liner services
- 5. Conclusions and avenues for further research.



## Estimating fuel costs

### Earlier work:

Buxton (1985); Cullinane and Khanna (1999); Endersen et al. (2003); EPA (2000); Corbett and Koehler (2003); MAN B&W Diesel A/S, 2008.

### Proposed formula:

$$TFC_{j} = \sum_{i=1}^{n} \sum_{t=1}^{3} (P_{m}.FC_{mit} + P_{a}.FC_{ait})$$

With:  $TFC_{j} \qquad Total \ Fuel \ Cost \ for \ a \ specific \ service \ j \ in \ US\$$   $t_{1} \qquad Time \ when \ the \ vessel \ is \ at \ sea$   $t_{2} \qquad Time \ when \ the \ vessel \ is \ maneuvering \ or \ transiting \ through \ canals$   $t_{3} \qquad Time \ when \ the \ vessel \ is \ hotelling \ (waiting \ and \ when \ at \ berth)$   $P_{m} \qquad Bunker \ price \ for \ the \ main \ engine \ (m)$   $P_{a} \qquad Bunker \ price \ for \ the \ auxiliary \ engine \ (a)$   $FC_{mit} \qquad Fuel \ consumption \ for \ main \ engine \ (m) \ per \ day \ for \ vessel \ i \ under \ status \ t$   $FC_{ait} \qquad Fuel \ consumption \ for \ auxiliary \ engine \ (a) \ per \ day \ for \ vessel \ i \ under \ status \ t$ 

Universiteit Antwerpen



## Estimating fuel costs



- Size in TEU
- Engine type

### SFOC v0

### Engine Power P<sub>e</sub> (at v0)

$$Log(P_e) = 1.996 + 1.013 Log(teu)$$

$$FC_{mi1-grams/nm} = \frac{m_s.L_F.S_{FOC}.P_e(TEU)}{v_0}$$

Fuel Consumption per day at sea main engine at v0, m=15%, L=80% and Sfoc=171 g-kW-hr

$$FC_{mi1}/_{at \ v_0} = 24.C.e^{1.996}.teu^{1.013} = 3,775.e^{1.996}.teu^{1.013}$$

### Service O/D

- Origin/Destination
- Number of ports before Dest. #P
- Number of vessels n

Time at sea (t1)

Time at port (t2) = #Px24 h.

Time mano. (t3) = 10%t2

Actual speed at sea v1

## $FC_{mi1}/atv_1 = FC_{mi1}/atv_0 \cdot \left(\frac{v_0}{v_1}\right)^{3.3}$

Fuel Consumption per day at sea main engine at actual speed

- + 10% for auxiliary engine
- + (10%\*5%) in port

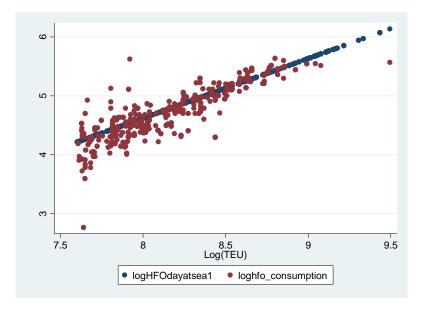
## Prices HVF& MDO Utilisation Rate

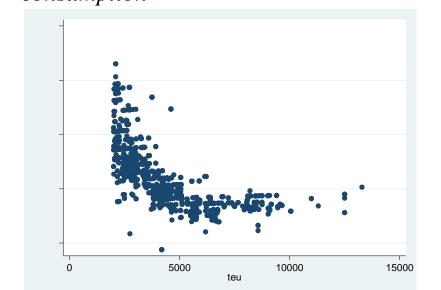




## Example – 2,259 containerships

|                                                                | 2000-<br>3000 | 3000-<br>4000 | 4000-<br>5000 | 5000-<br>6000 | 6000-<br>7000 | 7000-<br>8000 | 8000-<br>9000        | 9000-<br>10000 | 10000    |
|----------------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------------|----------------|----------|
| Number of vessels#                                             | 764           | 350           | 469           | 285           | 146           | 60            | 122                  | 46             | 17       |
| Mean size (TEU)                                                | 2530          | 3432          | 4385          | 5491          | 6505          | 7372          | 8293                 | 9307           | 11660    |
| Mean design speed (nm) - v <sub>0</sub>                        | 21.2          | 22.4          | 23.9          | 24.5          | 25.3          | 25.1          | 24.9                 | 25.1           | 23.6     |
| Mean age (year)                                                | 10.1          | 11.6          | 6.5           | 5.2           | 4.4           | 4.7           | 1.9                  | 1.4            | 0.6      |
| Mean main engine (kW)                                          | 20699         | 26741         | 38616         | 49243         | 57764         | 61436         | 64353                | 67259          | 66580    |
| Engine type - Two Stroke/Slow speed (%) - Other <i>(a)</i> (%) | 93<br>7       | 98<br>2       | 99<br>1       | 97<br>3       | 99<br>1       | 98<br>2       | 99<br>1              | 100<br>0       | 100<br>0 |
| Fuel consumption in tonnes/day (b)                             | 80            | 102           | 142           | 199           | 229           | 233           | 255                  | N/A            | N/A      |
| Fuel consumption in grams//teu/mile                            | 62            | 55            | 56            | 62            | 58            | 52            | 51                   | N/A            | N/A      |
| $\mathrm{FC}_{\mathrm{mi1}}$ in tonnes/day (c)                 | 78.1          | 106.4         | 136.4         | 171.3         | 203.4         | 230           | 260                  | 292            | 367      |
| Vessel speed (knots)                                           |               |               |               |               |               |               |                      |                |          |
| 18                                                             | 47.0          | 54.9          | 52.8          | 57.9          | 68.8          | 77.8          | 87.9                 | 98.8           | 124.1    |
| 19                                                             | 56.1          | 65.6          | 63.1          | 69.3          | 82.2          | 93.0          | 105.1                | 118.1          | 148.4    |
| 20                                                             | 66.5          | 77.7          | 74.7          | 82.0          | 97.4          | 110.1         | 124.5                | 139.8          | 175.7    |
| 21                                                             | 78.1          | 91.3          | 87.8          | 96.4          | 114.4         | 129.4         | 146.2                | 164.2          | 206.4    |
| 22                                                             | -             | 106.4         | 102.4         | 112.3         | 133.4         | 150.8         | 170.5                | 191.5          | 240.7    |
| 23                                                             | -             | -             | 118.5         | 130.1         | 154.5         | 174.7         | 197.5                | 221.8          | 278.7    |
| 24                                                             | ] -           | -             | 136.4         | 149.7         | 177.8         | 201.0         | 227.2                | 255.2          | 320.7    |
| 25                                                             | -             | _             |               | 171.3         | 203.4         | 230.0         | J <b>ri%-P</b> sitei | t 492Werpe     | 367.0    |

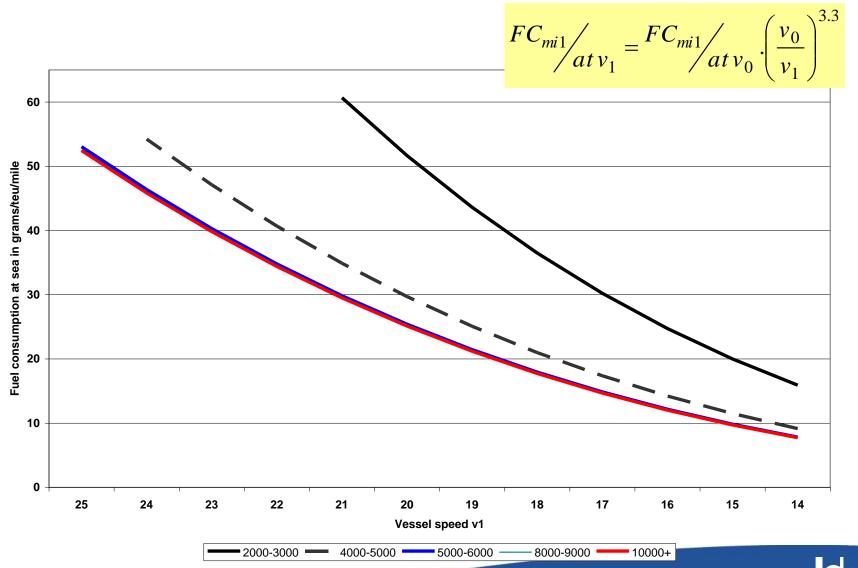




## Estimating fuel costs

 Total fuel consumption at sea for the main engine in grams/day and at a given speed v<sub>0</sub> can be estimated as:

$$FC_{mi1}/at_{V_0} = 24.C.e^{1.996}.teu^{1.013} = 3,775.e^{1.996}.teu^{1.013}$$

Figure 3. Fuel consumption with vessel size Figure 4. Economies of scale on fuel consumption










# Example of the impact of the decrease in vessel speed from the initial design speed $v_0$ to $v_1$





# Comparison of estimates with Germanischer Lloyd (GL) figures on fuel costs per day at sea - July 2006

| IN USD | 500       | 5000 teu |           | 8000 teu |           | 12000 teu |  |
|--------|-----------|----------|-----------|----------|-----------|-----------|--|
| Speed  | Estimates | GL       | Estimates | GL       | Estimates | GL        |  |
| 14     | 8,848     | 12,200   | 13,430    | 16,000   | 18,956    | 20,700    |  |
| 16     | 13,747    | 16,800   | 20,866    | 21,600   | 29,453    | 27,500    |  |
| 18     | 20,278    | 23,100   | 30,778    | 29,000   | 43,444    | 36,500    |  |
| 20     | 28,709    | 31,800   | 43,575    | 39,400   | 61,508    | 48,700    |  |
| 22     | 39,320    | 43,700   | 59,681    | 52,200   | 84,242    | 64,400    |  |
| 24     | 52,399    | 59,300   | 79,531    | 69,400   | 112,261   | 83,600    |  |
| 26     | 68,239    | 82,800   | 103,574   | 96,100   | 146,199   | 114,700   |  |



## Structure of the paper

- 1. Viewpoints of shippers and shipping lines
- 2. Past and current practices of fuel surcharges.
- 3. Model aiming at calculating the bunker cost for a specific service.
- 4. Application: comparison of estimates on fuel costs with the observed BAFs on a set of port-to-port liner services
- 5. Conclusions and avenues for further research.



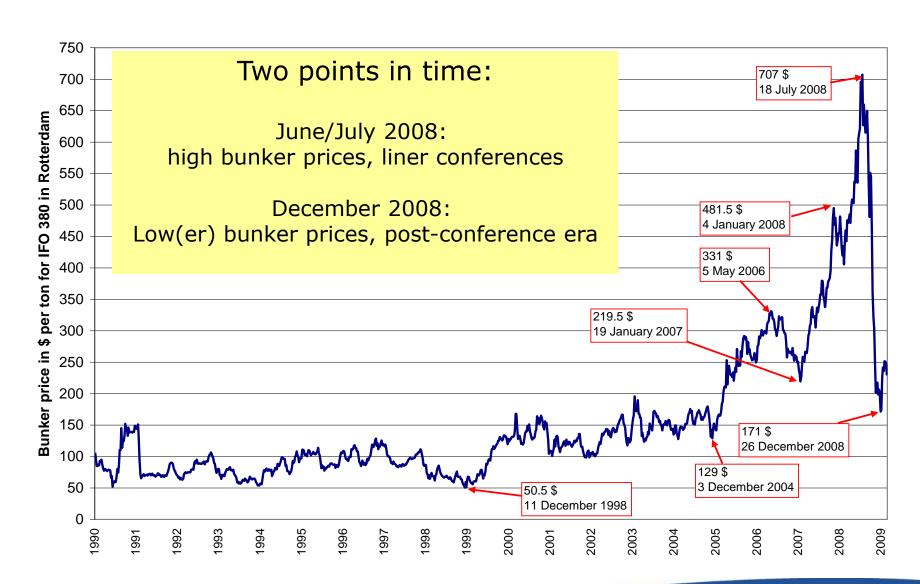
## Case-study

- Comparison of estimated fuel costs and applied BAF for containers exported via the port of Antwerp to 117 ports of discharge.
- Port bundles aggregated to eight service areas of the port of Antwerp

| Port of loading = Antwerp   | Obser-<br>vations | Average<br>one-way<br>distance | Average<br>transit time<br>(in days) | Average vessel size |
|-----------------------------|-------------------|--------------------------------|--------------------------------------|---------------------|
|                             |                   | (a)                            | (b)                                  |                     |
| Region of port of discharge |                   |                                |                                      |                     |

### Region of port of discharge

|                                  | no. | nm    | days | TEU  |
|----------------------------------|-----|-------|------|------|
| Africa                           | 15  | 4731  | 17   | 2525 |
| Baltic - Iberian Atlantic feeder | 10  | 1314  | 5    | 1350 |
| Far East                         | 24  | 11183 | 28   | 7563 |
| India / Pakistan                 | 9   | 7165  | 21   | 3963 |
| Latin and South-America          | 23  | 5765  | 17   | 3700 |
| Near East / East Med             | 17  | 3488  | 13   | 3535 |
| North America                    | 12  | 5096  | 17   | 3242 |
| Oceania                          | 7   | 13136 | 43   | 2922 |


#### 117

#### Notes:

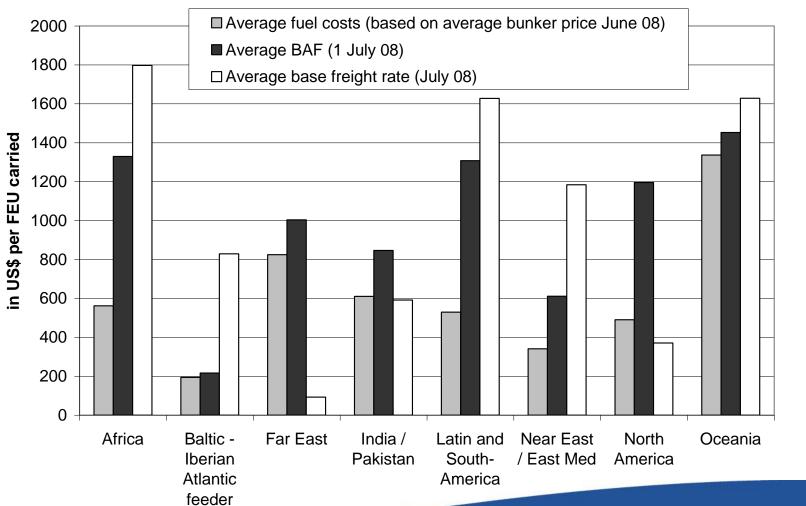
- (a) Including the deviation distance to call at en-route ports of call on liner service
- (b) Including total sailing time, total port time at intermediate ports of call on liner service and canal transits



### Bunker prices

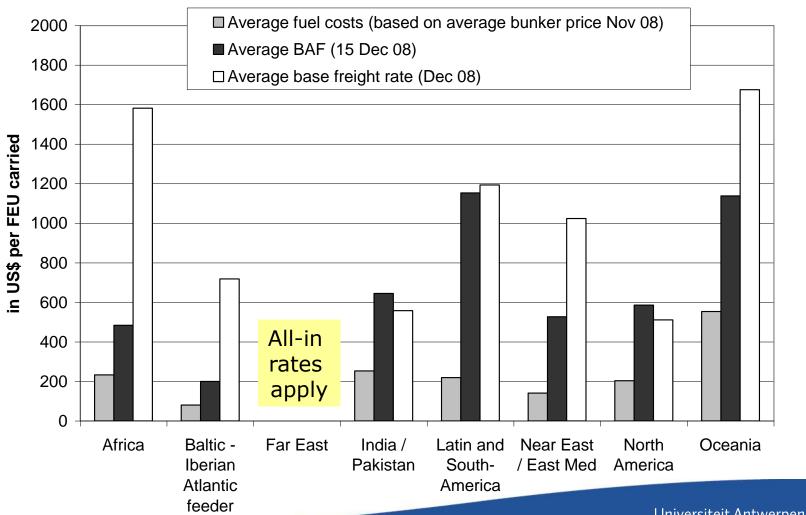





## Case-study

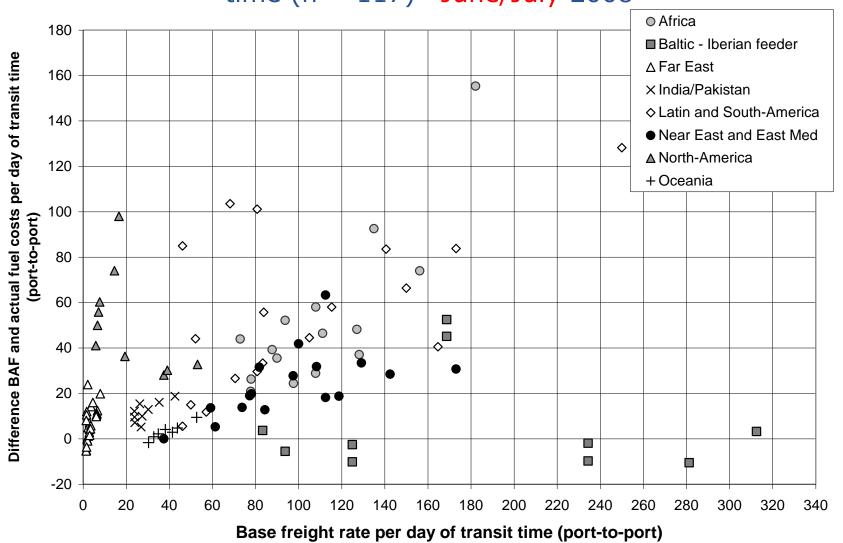
- Commercial speed of the vessels: determined using shipping lines' information on total transit times and port time.
- Real transit time on a port-to-port basis decomposed into total sailing time, average port time per intermediate port of call and canal transit time.
- Total vessel consumption for each port-to-port relation: combination of sailing time, vessel speed and vessel size with figures provided earlier and by adding fuel consumption linked to total port time (also in intermediate ports of call) and canal transit time.
- Average degree of utilization for all observed liner services out of Antwerp: 75% in June/July 2008 and 71% in December 2008.






### BAF, fuel costs and base freight rate per FEU – port-toport relations with loading port Antwerp –June-July 2008






### BAF, fuel costs and base freight rate per FEU - port-toport relations with loading port Antwerp – December 2008





# Base freight rate per day of transit time (port-to-port) and difference between BAF and actual fuel costs per day of transit time (n = 117) –June/July 2008





## Structure of the paper

- 1. Viewpoints of shippers and shipping lines
- 2. Past and current practices of fuel surcharges.
- 3. Model aiming at calculating the bunker cost for a specific service.
- 4. Application: comparison of estimates on fuel costs with the observed BAFs on a set of port-to-port liner services
- 5. Conclusions and avenues for further research.



## Case-study results

- BAF per FEU carried is typically (much) higher than the average fuel costs per FEU => BAF appears to involve a moderate to elevated element of revenue-making.
- The revenue-making characteristic of the BAF is significant on the shipping routes from Antwerp to Latin and South-America, Africa and North America.
- Observed variation in the difference between BAF and the actual fuel costs per FEU is mainly the result of differences in the shipping lines' BAF policies for specific ports of discharge.
- Revenue-making character of BAF has not disappeared after the abolition of liner conferences. On the contrary, most trade routes see an even larger gap between BAF and actual fuel costs.





## Case-study results

- The relationship between the base freight rate and the BAF is weak.
- The correlation between the base freight rate and the difference between BAF and the actual fuel costs is typically low and, in cases where some correlation exists, positive. The hypothesis that low freight rates would give an incentive to shipping lines to increase the revenue-making character of the BAF is not confirmed.
- However, a combination of decreasing freight rates and decreasing fuel costs seems to give an incentive to shipping lines to stall the downward correction of the BAFs. Such a pricing strategy allows shipping lines to (partly) compensate a decline in freight revenues by keeping the BAF disproportionately high.



### Conclusions

- Better understanding of shipping lines' strategies with respect to the incorporation of fuel costs in their pricing strategies.
- Room for further in-depth and comparative research on the relationship between BAF and the actual fuel costs:
  - Broadening the scope of the case-study to other regions and other base ports.
  - Analysis of the relationship between BAF and fuel costs on port pairs that are not linked to each other via direct services, but for which transhipment in another port is needed before reaching the port of discharge (i.e. interlining, relay or hub-feeder systems).
- Ongoing research: development of a fuel cost calculator

