Carry flag

In computer processors the carry flag (usually indicated as the C flag) is a single bit in a system status
register/flag register used to indicate when an arithmetic carry or borrow has been generated out of the
most significant arithmetic logic unit (ALU) bit position. The carry flag enables numbers larger than a
single ALU width to be added/subtracted by carrying (adding) a binary digit from a partial
addition/subtraction to the least significant bit position of a more significant word. It is also used to
extend bit shifts and rotates in a similar manner on many processors (sometimes done via a dedicated X
flag). For subtractive operations, two (opposite) conventions are employed as most machines set the
carry flag on borrow while some machines (such as the 6502 and the PIC) instead reset the carry flag on
borrow (and vice versa).

Contents

Uses

Carry flag vs. borrow flag
See also

References

External links

Uses

The carry flag is affected by the result of most arithmetic (and typically several bit wise) instructions and
is also used as an input to many of them. Several of these instructions have two forms which either read
or ignore the carry. In assembly languages these instructions are represented by mnemonics such as
ADD/SUB, ADC/SBC (ADD/SUB including carry), SHL/SHR (bit shifts), ROL/ROR (bit rotates),

RCR/RCL (rotate through carry), and so on.l The use of the carry flag in this manner enables multi-
word add, subtract, shift, and rotate operations.

An example is what happens if one were to add 255 and 255 using 8-bit registers. The result should be
510 which is the 9-bit value 111111110 in binary. The 8 least significant bits always stored in the

register would be 11111110 binary (254 decimal) but since there is carry out of bit 7 (the eight bit), the
carry is set, indicating that the result needs 9 bits. The valid 9-bit result is the concatenation of the carry
flag with the result.

For x86 ALU size of 8 bits, an 8-bit two's complement interpretation, the addition operation 11111111
+ 11111111 results in 111111110, Carry_Flag set, Sign_Flag set, and Overflow_Flag
clear.

If 11111111 represents two's complement signed integer —1 (ADD al, -1), then the interpretation of
the result is 11111110 because Overflow_Flag is clear, and Carry_Flag is ignored. The sign of
the result is negative, because Sign_Flag is set. 11111110 is the two's complement form of signed
integer —2.

https://en.wikipedia.org/wiki/Computer_processor
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Status_register
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Carry_(arithmetic)
https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Least_significant_bit
https://en.wikipedia.org/wiki/Bit_shift
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/PIC_microcontroller
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language#Opcode_mnemonics_and_extended_mnemonics
https://en.wikipedia.org/wiki/Bit_shift
https://en.wikipedia.org/wiki/Word_(data_type)
https://en.wikipedia.org/wiki/8-bit

If 11111111 represents unsigned integer binary number 255 (ADD al, 255), then the interpretation of
the result that the Carry_Flag cannot be ignored. The Overflow_Flag and the Sign_Flag are
ignored.

Another example may be an 8-bit register with the bit pattern 1010101 and the carry flag set; if we
execute a rotate left through carry instruction, the result would be 10101011 with the carry flag cleared
because the most significant bit (bit 7) was rotated into the carry while the carry was rotated into the least
significant bit (bit 0).

The early microprocessors Intel 4004 and Intel 8008 had specific instructions to set as well as reset the
carry flag explicitly. However, the later Intel 8080 (and Z80) did not include an explicit reset carry
opcode as this could be done equally fast via one of the bitwise AND, OR or XOR instructions (which do
not use the carry flag).

The carry flag is also often used following comparison instructions, which are typically implemented by
subtractive operations, to allow a decision to be made about which of the two compared values is lower
than (or greater or equal to) the other. Branch instructions which examine the carry flag are often
represented by mnemonics such as BCC and BCS to branch if the carry is clear, or branch if the carry is
set respectively. When used in this way the carry flag provides a mechanism for comparing the values as
unsigned integers. This is in contrast to the overflow flag which provides a mechanism for comparing the
values as signed integer values.

Carry flag vs. borrow flag

While the carry flag is well-defined for addition, there are two ways in common use to use the carry flag
for subtraction operations.

The first uses the bit as a borrow flag, setting it if a<b when computing a—b, and a borrow must be
performed. If a>b, the bit is cleared. A subtract with borrow (SBB) instruction will compute a—b—C = a

—(b+C), while a subtract without borrow (SUB) acts as if the borrow bit were clear. The 8080, Z80, 8051,
x86M1! and 68k families (among others) use a borrow bit.

The second takes advantage of the identity that —x = not(x)+1 and computes a—b as a+not(b)+1. The
carry flag is set according to this addition, and subtract with carry computes a+not(b)+C, while subtract
without carry acts as if the carry bit were set. The result is that the carry bit is set if a>b, and clear if a<b.
The System/360,[2] 6502, MSP430, ARM and PowerPC processors use this convention. The 6502 is a
particularly well-known example because it does not have a subtract without carry operation, so
programmers must ensure that the carry flag is set before every subtract operation where a borrow is not
required.

Summary of different uses of carry flag in subtraction

Carry or | Subtract without Subtract Subtract
borrow bit carry/borrow with borrow with carry
c=0 a-b-0 a+not(b) +0
a-b =a+not(b) +1 =a-b-1
=a+not(b) +1 a-b-1 a + not(b) + 1

c=1 =a+not(b)+0 =a-b-0

https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Intel_4004
https://en.wikipedia.org/wiki/Intel_8008
https://en.wikipedia.org/wiki/Intel_8080
https://en.wikipedia.org/wiki/Z80
https://en.wikipedia.org/wiki/Assembly_language#Opcode_mnemonics_and_extended_mnemonics
https://en.wikipedia.org/wiki/Overflow_flag
https://en.wikipedia.org/wiki/8080
https://en.wikipedia.org/wiki/Z80
https://en.wikipedia.org/wiki/Intel_MCS-51
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/68k
https://en.wikipedia.org/wiki/Bitwise_NOT
https://en.wikipedia.org/wiki/System/360
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/MSP430
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/PowerPC

Most commonly, the first alternative is referred to as a "subtract with borrow", while the second is called
a "subtract with carry". However, there are exceptions in both directions; the VAX, NS320xx, and Atmel
AVR architectures use the borrow bit convention, but call their a—b—C operation "subtract with carry"
(SBWC, SUBC and SBC). The PA-RISC and PICmicro architectures use the carry bit convention, but call

their a+not(b)+C operation "subtract with borrow" (SUBB and SUBWFB).

The ST6/ST7 8-bit microcontrollers are perhaps the most confusing of all. Although they do not have any
sort of "subtract with carry" instruction, they do have a carry bit which is set by a subtract instruction,
and the convention depends on the processor model. The ST60 processor uses the "carry" convention,
while the ST62 and ST63 processors use the "borrow" convention. %!

See also

= Binary arithmetic
= Half-carry flag
= Status register

References

1. "Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference
Manual” (http://download.intel.com/design/Pentiumll/manuals/24319102.PDF) (PDF).
Retrieved 2007-10-25.

2. IBM System/360 Principles of Operation (http://bitsavers.informatik.uni-stuttgart.de/pdf/iom/
360/princOps/A22-6821-0 360PrincOps.pdf) (PDF). p. 28. IBM Form A22-6821-0.

3. "ST6 Family Programming Manual” (http://www.st.com/content/ccc/resource/technical/docu
ment/programming_manual/4d/05/d1/a5/a0/9e/40/8b/CD00004606.pdf/files/CD00004606.p
df/jcr:content/translations/en.CD00004606.pdf#page=42) (PDF). Revision 2.0.
STMicroelectronics. October 2004. p. 42. Retrieved 2017-02-28.

External links

= Carry Flag and Overflow Flag in binary arithmetic (http://teaching.idallen.com/dat2343/10f/n
otes/040_overflow.txt)

= Carry Bit: How does it work? (https://brodowsky.it-sky.net/2013/12/22/carry-bit-how-does-it-
work/)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Carry_flag&oldid=923335208"

This page was last edited on 27 October 2019, at 22:14 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

https://en.wikipedia.org/wiki/VAX
https://en.wikipedia.org/wiki/NS320xx
https://en.wikipedia.org/wiki/Atmel_AVR
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/PICmicro
https://en.wikipedia.org/wiki/ST6/ST7
https://en.wikipedia.org/wiki/Binary_arithmetic
https://en.wikipedia.org/wiki/Half-carry_flag
https://en.wikipedia.org/wiki/Status_register
http://download.intel.com/design/PentiumII/manuals/24319102.PDF
http://bitsavers.informatik.uni-stuttgart.de/pdf/ibm/360/princOps/A22-6821-0_360PrincOps.pdf
http://www.st.com/content/ccc/resource/technical/document/programming_manual/4d/05/d1/a5/a0/9e/40/8b/CD00004606.pdf/files/CD00004606.pdf/jcr:content/translations/en.CD00004606.pdf#page=42
https://en.wikipedia.org/wiki/STMicroelectronics
http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt
https://brodowsky.it-sky.net/2013/12/22/carry-bit-how-does-it-work/
https://en.wikipedia.org/w/index.php?title=Carry_flag&oldid=923335208
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

