
Interrupt flag
The Interrupt flag (IF) is a system flag bit in the x86 architecture's FLAGS register, which determines
whether or not the central processing unit (CPU) will handle maskable hardware interrupts.[1]

The bit, which is bit 9 of the FLAGS register, may be set or cleared by programs with sufficient
privileges, as usually determined by the operating system. If the flag is set to 1, maskable hardware
interrupts will be handled. If cleared (set to 0), such interrupts will be ignored. IF does not affect the
handling of non-maskable interrupts (NMIs) or software interrupts generated by the INT instruction.

Setting and clearing
Privilege level

Old DOS programs

CLI
STI
See also
References
External links

The flag may be set or cleared using the CLI (Clear Interrupts), STI (Set Interrupts) and POPF (Pop
Flags) instructions.

CLI clears IF (sets to 0), while STI sets IF to 1. POPF pops 16 bits off the stack into the FLAGS register,
which means IF will be set or cleared based on the ninth bit on the top of the stack.[1]

In all three cases, only privileged applications (usually the OS kernel) may modify IF. Note that this only
applies to protected mode code. (Real mode code may always modify IF.)

CLI and STI are privileged instructions, which trigger a general protection fault if an unprivileged
application attempts to execute it, while POPF will simply not modify the IF flag if the application is
unprivileged.

The privilege level required to execute a CLI or STI instruction, or set IF using POPF, is determined by
the IOPL (I/O Privilege Level) in EFLAGS. If the IOPL is set to 2 for example, any program running
only in ring 0 can execute a CLI. Most modern operating systems set the IOPL to be 0 so only the kernel
can execute CLI/STI. The reason for this is that since clearing IF will force the processor to ignore all
interrupts, the kernel may never get control back if it is not set to 1 again.

Contents

Setting and clearing

Privilege level

https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/X86_architecture
https://en.wikipedia.org/wiki/FLAGS_register_(computing)
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Non-maskable_interrupt
https://en.wikipedia.org/wiki/INT_(x86_instruction)
https://en.wikipedia.org/wiki/X86_instruction_listings
https://en.wikipedia.org/wiki/FLAGS_register_(computing)
https://en.wikipedia.org/wiki/Kernel_(computer_science)
https://en.wikipedia.org/wiki/Protected_mode
https://en.wikipedia.org/wiki/Real_mode
https://en.wikipedia.org/wiki/Protected_mode#Privilege_levels
https://en.wikipedia.org/wiki/IOPL


Some old DOS programs that use a protected mode DOS extender and install their own interrupt handlers
(usually games) use the CLI instruction in the handlers to disable interrupts and either POPF (after a
corresponding PUSHF) or IRET (which restores the flags from the stack as part of its effects) to restore
it. This works if the program was started in real mode, but causes problems when such programs are run
in a DPMI-based container on modern operating systems (such as NTVDM under Windows NT or later).
Since CLI is a privileged instruction, it triggers a fault into the operating system when the program
attempts to use it. The OS then typically stops delivering interrupts to the program until the program
executes STI (which would cause another fault). However, the POPF instruction is not privileged and
simply fails silently to restore the IF. The result is that the OS stops delivering interrupts to the program,
which then hangs. DOS programs that do not use a protected mode extender do not suffer from this
problem, as they execute in V86 mode where POPF does trigger a fault.

There are few satisfactory resolutions to this issue. It is usually not possible to modify the program as
source code is typically not available and there is no room in the instruction stream to introduce a STI
without massive editing at the assembly level. Removing CLI's from the program or causing the V86 host
to ignore CLI completely might cause other bugs if the guest's interrupt handlers are not re-entrant safe
(though when executed on a modern processor, they typically execute fast enough to avoid overlapping
of interrupts).

CLI is commonly used as a synchronization mechanism in uniprocessor systems. For example, a CLI is
used in operating systems to disable interrupts so kernel code (typically a driver) can avoid race
conditions with an interrupt handler. Note that CLI only affects the interrupt flag for the processor on
which it is executed; in multiprocessor systems, executing a CLI instruction does not disable interrupts
on other processors. Thus, a driver/interrupt handler race condition can still occur because other
processors may service interrupts and execute the offending interrupt handler. For these systems, other
synchronization mechanisms such as locks must be used in addition to CLI/STI to prevent all race
conditions.

Because the HLT instruction halts until an interrupt occurs, the combination of a CLI followed by a HLT
is commonly used to intentionally hang the computer.

The STI instruction enables interrupts by setting the IF.

One interesting quirk about the STI instruction is that, unlike CLI which has an immediate effect,
interrupts are not actually enabled until after the instruction immediately following the STI. One side
effect of this could be IF=0, then executing a CLI instruction immediately after an STI instruction means
that interrupts are never recognized. The STI instruction sets the IF flag, but interrupts are not checked
for until after the next instruction which in this case would be the CLI which takes effect immediately.
This behavior exists so a processor that constantly takes interrupts can still make forward progress. See
IA-32 manuals for details.

Old DOS programs

CLI

STI

See also

https://en.wikipedia.org/wiki/DOS
https://en.wikipedia.org/wiki/DOS_Protected_Mode_Interface
https://en.wikipedia.org/wiki/NTVDM
https://en.wikipedia.org/wiki/General_Protection_Fault
https://en.wikipedia.org/wiki/Synchronization
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Kernel_(computer_science)
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Race_hazard#Computing
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/HLT_(x86_instruction)
https://en.wikipedia.org/wiki/Hang_(computing)
https://en.wikipedia.org/wiki/IA-32


FLAGS register (computing)
Intel 8259
Advanced Programmable Interrupt Controller (APIC)
Interrupt
Interrupt handler
Non-maskable interrupt (NMI)
Programmable Interrupt Controller (PIC)
x86

1. "Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference
Manual" (http://download.intel.com/design/PentiumII/manuals/24319102.PDF) (PDF).
Retrieved 2007-07-13.

Intel 64 and IA-32 Architectures Software Developer Manuals (https://software.intel.com/en-
us/articles/intel-sdm) - Retrieved 2017-09-14

Retrieved from "https://en.wikipedia.org/w/index.php?title=Interrupt_flag&oldid=875105290"

This page was last edited on 23 December 2018, at 21:05 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

References

External links

https://en.wikipedia.org/wiki/FLAGS_register_(computing)
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Non-maskable_interrupt
https://en.wikipedia.org/wiki/Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/X86
http://download.intel.com/design/PentiumII/manuals/24319102.PDF
https://software.intel.com/en-us/articles/intel-sdm
https://en.wikipedia.org/w/index.php?title=Interrupt_flag&oldid=875105290
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

