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Introduction

Assembly is among some of the oldest tools in a computer-programmer's toolbox. Nowadays though, entire software
projects can be written without ever looking at a single line of assembly code. So this pops up the question: why learn
assembly? Assembly language is one of the closest forms of communication that humans can engage in with a computer.
With assembly, the programmer can precisely track the flow of data and execution in a program in a mostly human-
readable form. Once a program has been compiled, it is difficult (and at times, nearly impossible) to reverse-engineer the
code into its original form. As a result, if you wish to examine a program that is already compiled but would rather not stare
at hexadecimal or binary, you will need to examine it in assembly language. Since debuggers will frequently only show
program code in assembly language, this provides one of many benefits for learning the language.

Assembly language is also the preferred tool, if not the only tool, for implementing some low-level tasks, such as
bootloaders and low-level kernel components. Code written in assembly has less overhead than code written in high-level
languages, so assembly code frequently will run much faster than equivalent programs written in other languages. Also,
code that is written in a high-level language can be compiled into assembly and "hand optimized" to squeeze every last bit
of speed out of it. As hardware manufacturers such as Intel and AMD add new features and new instructions to their
processors, often times the only way to access those features is to use assembly routines. That is, at least until the major
compiler vendors add support for those features.

Developing a program in assembly can be a very time consuming process, however. While it might not be a good idea to
write new projects in assembly language, it is certainly valuable to know a little bit about it.

This book will serve as an introduction to assembly language and a good resource for people who already know about the
topic, but need some more information on x86 system architecture. It will also describe some of the more advanced uses of
x86 assembly language. All readers are encouraged to read (and contribute to) this book, although prior knowledge of
programming fundamentals would definitely be beneficial.

The first section will discuss the x86 family of chips and introduce the basic instruction set. The second section will explain
the differences between the syntax of different assemblers. The third section will go over some of the additional instruction
sets available, including the floating point, MMX, and SSE operations.

The fourth section will cover some advanced topics in x86 assembly, including some low-level programming tasks such as
writing bootloaders. There are many tasks that cannot be easily implemented in a higher-level language such as C or C++.
For example, enabling and disabling interrupts, enabling protected mode, accessing the Control Registers, creating a Global
Descriptor Table, and other tasks all need to be handled in assembly. The fourth section will also deal with interfacing
assembly language with C and other high-level languages. Once a function is written in assembly (a function to enable
protected mode, for instance), we can interface that function to a larger, C-based (or even C++ based) kernel. The fifth
section will discuss the standard x86 chipset, cover the basic x86 computer architecture, and generally deal with the
hardware side of things.

Why Learn Assembly?

Who is This Book For?

How is This Book Organized?



The current layout of the book is designed to give readers as much information as they need without going overboard.
Readers who want to learn assembly language on a given assembler only need to read the first section and the chapter in the
second section that directly relates to their assembler. Programmers looking to implement the MMX or SSE instructions for
different algorithms only really need to read section 3. Programmers looking to implement bootloaders, kernels, or other
low-level tasks, can read section 4. People who really want to get to the nitty-gritty of the x86 hardware design can
continue reading on through section 5.

Basic FAQ
This page is going to serve as a basic FAQ for people who are new to assembly language programming.

The computer doesn't really "read" or "understand" anything per se, since a computer has no awareness nor consciousness,
but that's beside the point. The fact is that the computer cannot read the assembly language that you write. Your assembler
will convert the assembly language into a form of binary information called "machine code" that your computer uses to
perform its operations. If you don't assemble the code, it's complete gibberish to the computer.

That said, assembly is important because each assembly instruction usually relates to just a single machine code, and it is
possible for "mere mortals" to do this task directly with nothing but a blank sheet of paper, a pencil, and an assembly
instruction reference book. Indeed, in the early days of computers this was a common task and even required in some
instances "hand assembling" machine instructions for some basic computer programs. A classical example of this was done
by Steve Wozniak, when he hand assembled the entire Integer BASIC interpreter into 6502 machine code for use on his
initial Apple I computer. It should be noted, however, that such tasks done for commercially distributed software are so rare
that they deserve special mention from that fact alone. Very, very few programmers have actually done this for more than a
few instructions, and even then only for a classroom assignment.

The answers to this question are yes and no. The basic x86 machine code is dependent only on the processor. The x86
versions of Windows and Linux are obviously built on the x86 machine code. There are a few differences between Linux
and Windows programming in x86 Assembly:

1. On a Linux computer, the most popular assemblers are the GAS assembler, which uses the AT&T syntax for
writing code, and the Netwide Assembler, also known as NASM, which uses a syntax similar to MASM.

2. On a Windows computer, the most popular assembler is MASM, which uses the Intel syntax but also, a lot of
Windows users use NASM.

3. The available software interrupts, and their functions, are different on Windows and Linux.
4. The available code libraries are different on Windows and Linux.

Using the same assembler, the basic assembly code written on each Operating System is basically the same, except you
interact with Windows differently than you interact with Linux.

The short answer is that none of the assemblers is better than any other; it's a matter of personal preference.

The long answer is that different assemblers have different capabilities, drawbacks, etc. If you only know GAS syntax, then
you will probably want to use GAS. If you know Intel syntax and are working on a Windows machine, you might want to
use MASM. If you don't like some of the quirks or complexities of MASM and GAS, you might want to try FASM or
NASM. We will cover the differences between the different assemblers in section 2.

You don't need to know assembly for most computer tasks, but it can definitely be useful. Learning assembly is not about
learning a new programming language. If you are going to start a new programming project (unless that project is a
bootloader, a device driver, or a kernel), then you will probably want to avoid assembly like the plague. An exception to
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Is it the Same On Windows/DOS/Linux?
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Do I Need to Know Assembly?
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this could be if you absolutely need to squeeze the last bits of performance out of a congested inner loop and your compiler
is producing suboptimal code. Keep in mind, though, that premature optimization is the root of all evil, although some
computing-intense realtime tasks can only be optimized sufficiently if optimization techniques are understood and planned
for from the start.

However, learning assembly gives you a particular insight into how your computer works on the inside. When you program
in a higher-level language like C or Ada, all your code will eventually need to be converted into machine code instructions
so your computer can execute them. Understanding the limits of exactly what the processor can do, at the most basic level,
will also help when programming a higher-level language.

Most assemblers require that assembly code instructions each appear on their own line and are separated by a carriage
return. Most assemblers also allow for whitespace to appear between instructions, operands, etc. Exactly how you format
code is up to you, although there are some common ways:

One way keeps everything lined up:

Label1: 
mov ax, bx 
add ax, bx 
jmp Label3 
Label2: 
mov ax, cx 
... 

Another way keeps all the labels in one column and all the instructions in another column:

Label1: mov ax, bx 
        add ax, bx 
        jmp Label3 
Label2: mov ax, cx 
... 

Another way puts labels on their own lines and indents instructions slightly:

Label1: 
   mov ax, bx 
   add ax, bx 
   jmp Label3 
Label2: 
   mov ax, cx 
... 

Yet another way separates labels and instructions into separate columns AND keeps labels on their own lines:

Label1: 
        mov ax, bx 
        add ax, bx 
        jmp Label3 
Label2: 
        mov ax, cx 
... 

So there are different ways to do it, but there are some general rules that assembly programmers generally follow:

1. Make your labels obvious, so other programmers can see where they are.
2. More structure (indents) will make your code easier to read.
3. Use comments to explain what you are doing. The meaning of a piece of assembly code can often not be

immediately clear.

X86 Family
The term "x86" can refer both to an instruction set architecture and to microprocessors which implement it. The name x86
is derived from the fact that many of Intel's early processors had names ending in "86".

How Should I Format my Code?



The x86 instruction set architecture originated at Intel and has evolved over time by the addition of new instructions as well
as the expansion to 64-bits. As of 2009, x86 primarily refers to IA-32 (Intel Architecture, 32-bit) and/or x86-64, the
extension to 64-bit computing.

Versions of the x86 instruction set architecture have been implemented by Intel, AMD and several other vendors, with each
vendor having its own family of x86 processors.

8086/8087 (1978)
The 8086 was the original x86 microprocessor, with the 8087 as its floating-point coprocessor. The 8086
was Intel's first 16-bit microprocessor with a 20-bit address bus, thus enabling it to address up to 1 MiB,
although the architecture of the original IBM PC imposed a limit of 640 KiB of RAM, with the remainder
reserved for ROM and memory-mapped expansion cards, such as video memory. This limitation is still
present in modern CPUs, since they all support the backward-compatible "Real Mode" and boot into it.

8088 (1979)
After the development of the 8086, Intel also created the lower-cost 8088. The 8088 was similar to the
8086, but with an 8-bit data bus instead of a 16-bit bus. The address bus was left untouched.

80186/80187 (1982)
The 186 was the second Intel chip in the family; the 80187 was its floating point coprocessor. Except for
the addition of some new instructions, optimization of some old ones, and an increase in the clock speed,
this processor was identical to the 8086.

80286/80287 (1982)
The 286 was the third model in the family; the 80287 was its floating point coprocessor. The 286
introduced the “Protected Mode” mode of operation, in addition to the “Real Mode” that the earlier models
used. All subsequent x86 chips can also be made to run in real mode or in protected mode. Switching
back from protected mode to real mode was initially not supported, but found to be possible (although
relatively slow) by resetting the CPU, then continuing in real mode. Although the processor featured an
address bus with 24 lines (24 bits, thus enabling to address up to 16 MiB), these could only be used in
protected mode. In real mode, the processor was still limited to the 20-bits address bus.

80386 (1985)
The 386 was the fourth model in the family. It was the first Intel microprocessor with a 32-bit word. The
386DX model was the original 386 chip, and the 386SX model was an economy model that used the same
instruction set, but which only had a 16-bit data bus. Both featured a 32-bits address bus, thus getting rid
of the segmented addressing methods used in the previous models and enabling a "flat" memory model,
where one register can hold an entire address, instead of relying on two 16-bit registers to create a 20-
bit/24-bit address. The flat memory layout was only supported in protected mode. Also, contrary to the
286, it featured an "unreal mode" in which protected-mode software could switch to perform real-mode
operations (although this backward compatibility was not complete, as the physical memory was still
protected). The 386EX model is still used today in embedded systems,

80486 (1989)
The 486 was the fifth model in the family. It had an integrated floating point unit for the first time in x86
history. Early model 80486 DX chips were found to have defective FPUs. They were physically modified to
disconnect the FPU portion of the chip and sold as the 486SX (486-SX15, 486-SX20, and 486-SX25). A
487 "math coprocessor" was available to 486SX users and was essentially a 486DX with a working FPU
and an extra pin added. The arrival of the 486DX-50 processor saw the widespread introduction of fan
assisted heat-sinks being used to keep the processors from overheating.

Pentium (1993)
Intel called it the “Pentium” because they couldn't trademark the code number “80586”. The original
Pentium was a faster chip than the 486 with a few other enhancements; later models also integrated the
MMX instruction set.

Pentium Pro (1995)
The Pentium Pro was the sixth-generation architecture microprocessor, originally intended to replace the
original Pentium in a full range of applications, but later reduced to a more narrow role as a server and
high-end desktop chip.

Pentium II (1997)
The Pentium II was based on a modified version of the P6 core first used for the Pentium Pro, but with
improved 16-bit performance and the addition of the MMX SIMD instruction set, which had already been
introduced on the Pentium MMX.

Pentium III (1999)
Initial versions of the Pentium III were very similar to the earlier Pentium II, the most notable difference
being the addition of SSE instructions.

Pentium 4 (2000)

Intel x86 Microprocessors
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The Pentium 4 had a new 7th generation "NetBurst" architecture. Pentium 4 chips also introduced the
notions “Hyper-Threading”, and “Multi-Core” chips.

Core (2006)
The architecture of the Core processors was actually an even more advanced version of the 6th
generation architecture dating back to the 1995 Pentium Pro. The limitations of the NetBurst architecture,
especially in mobile applications, were too great to justify creation of more NetBurst processors. The Core
processors were designed to operate more efficiently with a lower clock speed. All Core branded
processors had two processing cores; the Core Solos had one core disabled, while the Core Duos used
both processors.

Core 2 (2006)
An upgraded, 64-bit version of the Core architecture. All desktop versions are multi-core.

i Series (2008)
The successor to Core 2 processors, with the i7 line featuring Hyper-Threading.

Celeron (first model 1998)
The Celeron chip is actually a large number of different chip designs, depending on price. Celeron chips
are the economy line of chips, and are frequently cheaper than the Pentium chips—even if the Celeron
model in question is based off a Pentium architecture.

Xeon (first model 1998)
The Xeon processors are modern Intel processors made for servers, which have a much larger cache
(measured in MiB in comparison to other chips' KiB-sized cache) than the Pentium microprocessors.

Athlon 
Athlon is the brand name applied to a series of different x86 processors designed and manufactured by
AMD. The original Athlon, or Athlon Classic, was the first seventh-generation x86 processor and, in a first,
retained the initial performance lead it had over Intel's competing processors for a significant period of
time.

Turion 
Turion 64 is the brand name AMD applies to its 64-bit low-power (mobile) processors. Turion 64
processors (but not Turion 64 X2 processors) are compatible with AMD's Socket 754 and are equipped
with 512 or 1024 KiB of L2 cache, a 64-bit single channel on-die memory controller, and an 800 MHz
HyperTransport bus.

Duron 
The AMD Duron was an x86-compatible computer processor manufactured by AMD. It was released as a
low-cost alternative to AMD's own Athlon processor and the Pentium III and Celeron processor lines from
rival Intel.

Sempron 
Sempron is, as of 2006, AMD's entry-level desktop CPU, replacing the Duron processor and competing
against Intel's Celeron D processor.

Opteron 
The AMD Opteron is the first eighth-generation x86 processor (K8 core), and the first of AMD's AMD64
(x86-64) processors. It is intended to compete in the server market, particularly in the same segment as
the Intel Xeon processor.

X86 Architecture

The x86 architecture has 8 General-Purpose Registers (GPR), 6 Segment Registers, 1 Flags Register and an Instruction
Pointer. 64-bit x86 has additional registers.

The 8 GPRs are:

1. Accumulator register (AX). Used in arithmetic operations
2. Counter register (CX). Used in shift/rotate instructions and loops.
3. Data register (DX). Used in arithmetic operations and I/O operations.
4. Base register (BX). Used as a pointer to data (located in segment register DS, when in segmented mode).

AMD x86 Compatible Microprocessors

x86 Architecture

General-Purpose Registers (GPR) - 16-bit naming conventions



5. Stack Pointer register (SP). Pointer to the top of the stack.
6. Stack Base Pointer register (BP). Used to point to the base of the stack.
7. Source Index register (SI). Used as a pointer to a source in stream operations.
8. Destination Index register (DI). Used as a pointer to a destination in stream operations.

The order in which they are listed here is for a reason: it is the same order that is used in a push-to-stack operation, which
will be covered later.

All registers can be accessed in 16-bit and 32-bit modes. In 16-bit mode, the register is identified by its two-letter
abbreviation from the list above. In 32-bit mode, this two-letter abbreviation is prefixed with an 'E' (extended). For
example, 'EAX' is the accumulator register as a 32-bit value.

Similarly, in the 64-bit version, the 'E' is replaced with an 'R' (register), so the 64-bit version of 'EAX' is called 'RAX'.

It is also possible to address the first four registers (AX, CX, DX and BX) in their size of 16-bit as two 8-bit halves. The
least significant byte (LSB), or low half, is identified by replacing the 'X' with an 'L'. The most significant byte (MSB), or
high half, uses an 'H' instead. For example, CL is the LSB of the counter register, whereas CH is its MSB.

In total, this gives us five ways to access the accumulator, counter, data and base registers: 64-bit, 32-bit, 16-bit, 8-bit LSB,
and 8-bit MSB. The other four are accessed in only four ways: 64-bit, 32-bit, 16-bit, and 8-bit. The following table
summarises this:

Register Accumulator Counter Data Base Stack
Pointer

Stack
Base

Pointer
Source Destination

64-bit RAX RCX RDX RBX RSP RBP RSI RDI

32-bit EAX ECX EDX EBX ESP EBP ESI EDI

16-bit AX CX DX BX SP BP SI DI

8-bit AH AL CH CL DH DL BH BL SPL BPL SIL DIL

identifiers to access registers and parts thereof

The 6 Segment Registers are:

Stack Segment (SS). Pointer to the stack.
Code Segment (CS). Pointer to the code.
Data Segment (DS). Pointer to the data.
Extra Segment (ES). Pointer to extra data ('E' stands for 'Extra').
F Segment (FS). Pointer to more extra data ('F' comes after 'E').
G Segment (GS). Pointer to still more extra data ('G' comes after 'F').

Most applications on most modern operating systems (like FreeBSD, Linux or Microsoft Windows) use a memory model
that points nearly all segment registers to the same place (and uses paging instead), effectively disabling their use. Typically
the use of FS or GS is an exception to this rule, instead being used to point at thread-specific data.

The EFLAGS is a 32-bit register used as a collection of bits representing Boolean values to store the results of operations
and the state of the processor.

The names of these bits are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0 0 0 0 0 0 0 0 0 0 ID VIP VIF AC VM RF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 NT IOPL OF DF IF TF SF ZF 0 AF 0 PF 1 CF

Segment Registers

EFLAGS Register



The bits named 0 and 1 are reserved bits and shouldn't be modified.

The different use of these flags are:
0. CF : Carry Flag. Set if the last arithmetic operation carried (addition) or borrowed (subtraction) a bit beyond

the size of the register. This is then checked when the operation is followed with an add-with-carry or
subtract-with-borrow to deal with values too large for just one register to contain.

2. PF : Parity Flag. Set if the number of set bits in the least significant byte is a multiple of 2.
4. AF : Adjust Flag. Carry of Binary Code Decimal (BCD) numbers arithmetic operations.
6. ZF : Zero Flag. Set if the result of an operation is Zero (0).
7. SF : Sign Flag. Set if the result of an operation is negative.
8. TF : Trap Flag. Set if step by step debugging.
9. IF : Interruption Flag. Set if interrupts are enabled.

10. DF : Direction Flag. Stream direction. If set, string operations will decrement their pointer rather than
incrementing it, reading memory backwards.

11. OF : Overflow Flag. Set if signed arithmetic operations result in a value too large for the register to contain.
12-
13. IOPL : I/O Privilege Level field (2 bits). I/O Privilege Level of the current process.

14. NT : Nested Task flag. Controls chaining of interrupts. Set if the current process is linked to the next
process.

16. RF : Resume Flag. Response to debug exceptions.
17. VM : Virtual-8086 Mode. Set if in 8086 compatibility mode.
18. AC : Alignment Check. Set if alignment checking of memory references is done.
19. VIF : Virtual Interrupt Flag. Virtual image of IF.
20. VIP : Virtual Interrupt Pending flag. Set if an interrupt is pending.
21. ID : Identification Flag. Support for CPUID instruction if can be set.

The EIP register contains the address of the next instruction to be executed if no branching is done.

EIP can only be read through the stack after a call instruction.

The x86 architecture is little-endian, meaning that multi-byte values are written least significant byte first. (This refers only
to the ordering of the bytes, not to the bits.)

So the 32 bit value B3B2B1B016 on an x86 would be represented in memory as:

Little endian
representation
B0 B1 B2 B3

For example, the 32 bits double word 0x1BA583D4 (the 0x denotes hexadecimal) would be written in memory as:

Little
endian

example
D4 83 A5 1B

This will be seen as 0xD4 0x83 0xA5 0x1B when doing a memory dump.

Two's complement is the standard way of representing negative integers in binary. The sign is changed by inverting all of
the bits and adding one.

Two's

Instruction Pointer

Memory

Two's Complement Representation
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complement
example

Start: 0001

Invert: 1110

Add One: 1111

0001 represents decimal 1

1111 represents decimal -1

The addressing mode indicates the manner in which the operand is presented.

Register Addressing
(operand address R is in the address field)

mov ax, bx  ; moves contents of register bx into ax 

Immediate
(actual value is in the field)

mov ax, 1   ; moves value of 1 into register ax 

or

mov ax, 010Ch ; moves value of 0x010C into register ax 

Direct memory addressing
(operand address is in the address field)

.data 
my_var dw 0abcdh ; my_var = 0xabcd 
.code 
mov ax, [my_var] ; copy my_var content into ax (ax=0xabcd) 

Direct offset addressing
(uses arithmetics to modify address)

byte_table db 12, 15, 16, 22 ; table of bytes 
mov al, [byte_table + 2] 
mov al, byte_table[2] ; same as previous instruction 

Register Indirect
(field points to a register that contains the operand address)

mov ax, [di] 

The registers used for indirect addressing are BX, BP, SI, DI

64-bit x86 adds 8 more general-purpose registers, named R8, R9, R10 and so on up to R15.

R8–R15 are the new 64-bit registers.
R8D–R15D are the lowermost 32 bits of each register.
R8W–R15W are the lowermost 16 bits of each register.
R8B–R15B are the lowermost 8 bits of each register.

Addressing modes

General-purpose registers (64-bit naming conventions)



As well, 64-bit x86 includes SSE2, so each 64-bit x86 CPU has at least 8 registers (named XMM0–XMM7) that are 128
bits wide, but only accessible through SSE instructions. They cannot be used for quadruple-precision (128-bit) floating-
point arithmetic, but they can each hold 2 double-precision or 4 single-precision floating-point values for a SIMD parallel
instruction. They can also be operated on as 128-bit integers or vectors of shorter integers. If the processor supports AVX,
as newer Intel and AMD desktop CPUs do, then each of these registers is actually the lower half of a 256-bit register
(named YMM0–YMM7), the whole of which can be accessed with AVX instructions for further parallelization.

The stack is a Last In First Out (LIFO) data structure; data is pushed onto it and popped off of it in the reverse order.

mov ax, 006Ah 
mov bx, F79Ah 
mov cx, 1124h 
 
push ax ; push the value in AX onto the top of the stack, which now holds the value 0x006A. 
push bx ; do the same thing to the value in BX; the stack now has 0x006A and 0xF79A. 
push cx ; now the stack has 0x006A, 0xF79A, and 0x1124. 
 
call do_stuff ; do some stuff. The function is not forced to save the registers it uses, hence us saving them. 
 
pop cx ; pop the element on top of the stack, 0x1124, into CX; the stack now has 0x006A and 0xF79A. 
pop bx ; pop the element on top of the stack, 0xF79A, into BX; the stack now has just 0x006A. 
pop ax ; pop the element on top of the stack, 0x006A, into AX; the stack is now empty. 

The Stack is usually used to pass arguments to functions or procedures and also to keep track of control flow when the
call instruction is used. The other common use of the Stack is temporarily saving registers.

Real Mode is a holdover from the original Intel 8086. You generally won't need to know anything about it (unless you are
programming for a DOS-based system or, more likely, writing a boot loader that is directly called by the BIOS).

The Intel 8086 accessed memory using 20-bit addresses. But, as the processor itself was 16-bit, Intel invented an addressing
scheme that provided a way of mapping a 20-bit addressing space into 16-bit words. Today's x86 processors start in the so-
called Real Mode, which is an operating mode that mimics the behavior of the 8086, with some very tiny differences, for
backwards compatibility.

In Real Mode, a segment and an offset register are used together to yield a final memory address. The value in the segment
register is multiplied by 16 (shifted 4 bits to the left) and the offset is added to the result. This provides a usable address
space of 1 MB. However, a quirk in the addressing scheme allows access past the 1 MB limit if a segment address of
0xFFFF (the highest possible) is used; on the 8086 and 8088, all accesses to this area wrapped around to the low end of
memory, but on the 80286 and later, up to 65520 bytes past the 1 MB mark can be addressed this way if the A20 address
line is enabled. See: The A20 Gate Saga.

One benefit shared by Real Mode segmentation and by Protected Mode Multi-Segment Memory Model is that all addresses
must be given relative to another address (this is, the segment base address). A program can have its own address space and
completely ignore the segment registers, and thus no pointers have to be relocated to run the program. Programs can
perform near calls and jumps within the same segment, and data is always relative to segment base addresses (which in the
Real Mode addressing scheme are computed from the values loaded in the Segment Registers).

This is what the DOS *.COM format does; the contents of the file are loaded into memory and blindly run. However, due to
the fact that Real Mode segments are always 64 KB long, COM files could not be larger than that (in fact, they had to fit
into 65280 bytes, since DOS used the first 256 bytes of a segment for housekeeping data); for many years this wasn't a
problem.

Stack

CPU Operation Modes

Real Mode

Protected Mode
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If programming in a modern 32-bit operating system (such as Linux, Windows), you are basically programming in flat 32-
bit mode. Any register can be used in addressing, and it is generally more efficient to use a full 32-bit register instead of a
16-bit register part. Additionally, segment registers are generally unused in flat mode, and it is generally a bad idea to touch
them.

Using a 32-bit register to address memory, the program can access (almost) all of the memory in a modern computer. For
earlier processors (with only 16-bit registers) the segmented memory model was used. The 'CS', 'DS', and 'ES' registers are
used to point to the different chunks of memory. For a small program (small model) the CS=DS=ES. For larger memory
models, these 'segments' can point to different locations.

The term "Long Mode" refers to the 64-bit mode.

Comments

When writing code, it is very helpful to use some comments explaining what is going on. A comment is a section of regular
text that the assembler ignores when turning the assembly code into the machine code. In assembly comments are usually
denoted with a semicolon ";", although GAS uses "#" for single line comments and "/* ... */" for multi-line comments.

Here is an example:

Label1: 
   mov ax, bx ; move contents of bx into ax 
   add ax, bx ; add the contents of bx into ax 
   ... 

Everything after the semicolon, on the same line, is ignored. Let's show another example:

Label1: 
   mov ax, bx 
   ;mov cx, ax 
   ... 

Here, the assembler never sees the second instruction "mov cx, ax", because it ignores everything after the semicolon.
When someone reads the code in the future they will find the comments and hopefully try to figure out what the
programmer intended.

The HLA assembler also has the ability to write comments in C or C++ style, but we can't use the semicolons. This is
because in HLA, the semicolons are used at the end of every instruction:

mov(ax, bx); //This is a C++ comment. 
/*mov(cx, ax);  everything between the slash-stars is commented out.  
                This is a C comment*/ 

C++ comments go all the way to the end of the line, but C comments go on for many lines from the "/*" all the way until
the "*/". For a better understanding of C and C++ comments in HLA, see Programming:C or the C++ Wikibooks.

16 32 and 64 Bits
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HLA Comments
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When using x86 assembly, it is important to consider the differences between architectures that are 16, 32, and 64 bits. This
page will talk about some of the basic differences between architectures with different bit widths.

The registers found on the 8086 and all subsequent x86 processors are the following: AX, BX, CX, DX, SP, BP, SI, DI, CS,
SS, ES, DS, IP and FLAGS. These are all 16 bits wide.

On any Windows-based system (except 64 bit versions), you can run a very handy program called "debug.exe" from a DOS
shell, which is very useful for learning about 8086. If you are using DOSBox or FreeDOS, you can use "debug.exe" as
provided by FreeDOS. (http://www.ibiblio.org/pub/micro/pc-stuff/freedos/files/distributions/1.2/repos/pkg-html/debug.htm
l)

AX, BX, CX, DX
These general purpose registers can also be addressed as 8-bit registers. So AX = AH (high 8-bit) and AL
(low 8-bit).

SI, DI
These registers are usually used as offsets into data space. By default, SI is offset from the DS data
segment, DI is offset from the ES extra segment, but either or both of these can be overridden.

SP
This is the stack pointer, offset usually from the stack segment SS. Data is pushed onto the stack for
temporary storage, and popped off the stack when it is needed again.

BP
The stack frame, usually treated as an offset from the stack segment SS. Parameters for subroutines are
commonly pushed onto the stack when the subroutine is called, and BP is set to the value of SP when a
subroutine starts. BP can then be used to find the parameters on the stack, no matter how much the stack
is used in the meanwhile.

CS, DS, ES, SS
The segment pointers. These are the offset in memory of the current code segment, data segment, extra
segment, and stack segment respectively.

IP
The instruction pointer. Offset from the code segment CS, this points at the instruction currently being
executed.

FLAGS (F)
A number of single-bit flags that indicate (or sometimes set) the current status of the processor.

With the chips beginning to support a 32-bit data bus, the registers were also widened to 32 bits. The names for the 32-bit
registers are simply the 16-bit names with an 'E' prepended.

EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI 
These are the 32-bit versions of the registers shown above.

EIP 
The 32-bit version of IP. Always use this instead of IP on 32-bit systems.

EFLAGS 
An expanded version of the 16-bit FLAGS register.

The names of the 64-bit registers are the same of those of the 16-bit registers, except beginning with an 'R'.

RAX, RBX, RCX, RDX, RSP, RBP, RSI, RDI 

Registers

16-bit

32-bit

64-bit
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These are the 64-bit versions of the registers shown above.
RIP

This is the full 64-bit instruction pointer and should be used instead of EIP (which will be inaccurate if the
address space is larger than 4 GiB, which may happen even with 4 GiB or less of RAM).

R8–15
These are new extra registers for 64-bit. They are counted as if the registers above are registers zero
through seven, inclusively, rather than one through eight.

R8–R15 can be accessed as 8-bit, 16-bit, or 32-bit registers. Using R8 as an example, the names corresponding to those
widths are R8B, R8W, and R8D, respectively. 64-bit versions of x86 also allow the low byte of RSP, RBP, RSI, RDI to be
accessed directly. For example, the low byte of RSP can be accessed using SPL. There is no way to directly access bits 8–
15 of those registers, as AH allows for AX.

64-bit x86 includes SSE2 (an extension to 32-bit x86), which provides 128-bit registers for specific instructions. Most
CPUs made since 2011 also have AVX, a further extension that lengthens these registers to 256 bits. Some also have AVX-
512, which lengthens them to 512 bits and adds 16 more registers.

XMM0~7 
SSE2 and newer.

XMM8~15 
SSE3 and newer and AMD (but not Intel) SSE2.

YMM0~15 
AVX. Each YMM register includes the corresponding XMM register as its lower half.

ZMM0~15 
AVX-512F. Each ZMM register includes the corresponding YMM register as its lower half.

ZMM16~31 
AVX-512F. 512-bit registers that are not addressable in narrower modes unless AVX-512VL is
implemented.

XMM16~31 
AVX-512VL. Each is the lower quarter of the corresponding ZMM register.

YMM16~31 
AVX-512VL. Each is the lower half of the corresponding ZMM register.

The original 8086 only had registers that were 16 bits in size, effectively allowing to store one value of the range [0 - (216 -
1)] (or simpler: it could address up to 65536 different bytes, or 64 kibibytes) - but the address bus (the connection to the
memory controller, which receives addresses, then loads the content from the given address, and returns the data back on
the data bus to the CPU) was 20 bits in size, effectively allowing to address up to 1 mebibyte of memory. That means that
all registers by themselves were not large enough to make use of the entire width of the address bus, leaving 4 bits unused,
scaling down the size of usable addresses by 16 bytes (1024 KiB / 64 KiB = 16 bytes).

The problem was this: how can a 20-bit address space be referred to by the 16-bit registers? To solve this problem, the
engineers of Intel came up with segment registers CS (Code Segment), DS (Data Segment), ES (Extra Segment), and SS
(Stack Segment). To convert from 20-bit address, one would first divide it by 16 and place the quotient in the segment
register and remainder in the offset register. This was represented as CS:IP (this means, CS is the segment and IP is the
offset). Likewise, when an address is written SS:SP it means SS is the segment and SP is the offset.

This works also the reversed way. If one was, instead of convert from, to create a 20 bit address, it would be done by taking
the 16-bit value of a segment register and put it on the address bus, but shifted 4 times to the left (thus effectively
multiplying the register by 16), and then by adding the offset from another register untouched to the value on the bus, thus
creating a full a 20-bit address.

128-bit, 256-bit and 512-bit (SSE/AVX)

Addressing memory

8086 and 80186

Example
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If CS = 258C and IP = 001216, then CS:IP will point to a 20 bit address equivalent to "CS × 16 + IP" which will be

258C × 1016 + 001216 = 258C0 + 001216 = 258D2 (Remember: 16 decimal = 1016).

The 20-bit address is known as an absolute (or linear) address and the Segment:Offset representation (CS:IP) is known as a
segmented address. This separation was necessary, as the register itself could not hold values that required more than 16
bits encoding. When programming in protected mode on a 32-bit or 64-bit processor, the registers are big enough to fill the
address bus entirely, thus eliminating segmented addresses - only linear/logical addresses are generally used in this "flat
addressing" mode, although the Segment:Offset architecture is still supported for backwards compatibility.

It is important to note that there is not a one-to-one mapping of physical addresses to segmented addresses; for any physical
address, there is more than one possible segmented address. For example: consider the segmented representations
B000:8000 and B200:6000. Evaluated, they both map to physical address B8000.

B000:8000 = B000 × 1016 + 800016 = B0000 + 800016 = B8000, and

B200:6000 = B200 × 1016 + 600016 = B2000 + 600016 = B8000.

However, using an appropriate mapping scheme avoids this problem: such a map applies a linear transformation to the
physical addresses to create precisely one segmented address for each. To reverse the translation, the map [f(x)] is simply
inverted.

For example, if the segment portion is equal to the physical address divided by 1016 and the offset is equal to the remainder,
only one segmented address will be generated. (No offset will be greater than 0F16.) Physical address B8000 maps to
(B8000 / 1016):(B8000 mod 1016) or B800:0. This segmented representation is given a special name: such addresses are
said to be "normalized Addresses".

CS:IP (Code Segment: Instruction Pointer) represents the 20-bit address of the physical memory from where the next
instruction for execution will be picked up. Likewise, SS:SP (Stack Segment: Stack Pointer) points to a 20-bit absolute
address which will be treated as stack top (8086 uses this for pushing/popping values).

As ugly as this may seem, it was in fact a step towards the protected addressing scheme used in later chips. The 80286 had
a protected mode of operation, in which all 24 of its address lines were available, allowing for addressing of up to 16 MiB
of memory. In protected mode, the CS, DS, ES, and SS registers were not segments but selectors, pointing into a table that
provided information about the blocks of physical memory that the program was then using. In this mode, the pointer value
CS:IP = 0010:2400 is used as follows:

The CS value 001016 is an offset into the selector table, pointing at a specific selector. This selector would have a 24-bit
value to indicate the start of a memory block, a 16-bit value to indicate how long the block is, and flags to specify whether
the block can be written, whether it is currently physically in memory, and other information. Let's say that the memory
block pointed to actually starts at the 24-bit address 16440016, the actual address referred to then is 16440016 + 240016 =
16680016. If the selector also includes information that the block is 240016 bytes long, the reference would be to the byte
immediately following that block, which would cause an exception: the operating system should not allow a program to
read memory that it does not own. And if the block is marked as read-only, which code segment memory should be so that
programs don't overwrite themselves, an attempt to write to that address would similarly cause an exception.

With CS and IP being expanded to 32 bits in the 386, this scheme became unnecessary; with a selector pointing at physical
address 0000000016, a 32-bit register could address up to 4 GiB of memory. However, selectors are still used to protect
memory from rogue programs. If a program in Windows tries to read or write memory that it doesn't own, for instance, it
will violate the rules set by the selectors, triggering an exception, and Windows will shut it down with the "General
protection fault" message.

Protected Mode (80286+)

32-Bit Addressing



32-bit addresses can cover memory up to 4 GiB in size. This means that we don't need to use offset addresses in 32-bit
processors. Instead, we use what is called the "Flat addressing" scheme, where the address in the register directly points to a
physical memory location. The segment registers are used to define different segments, so that programs don't try to
execute the stack section, and they don't try to perform stack operations on the data section accidentally.

As was said earlier, the 8086 processor had 20 address lines (from A0 to A19), so the total memory addressable by it was 1
MiB (or 2 to the power 20). But since it had only 16 bit registers, they came up with Segment:Offset scheme or else using a
single 16-bit register they couldn't have possibly accessed more than 64 KiB (or 2 to the power 16) of memory. So this
made it possible for a program to access the whole of 1 MiB of memory.

But with this segmentation scheme also came a side effect. Not only could your code refer to the whole of 1 MiB with this
scheme, but actually a little more than that. Let's see how ....

Let's keep in mind how we convert from a Segment:Offset representation to Linear 20 bit representation.

The conversion:

Segment:Offset = Segment × 16 + Offset.

Now to see the maximum amount of memory that can be addressed, let's fill in both Segment and Offset to their maximum
values and then convert that value to its 20-bit absolute physical address.

So, max value for Segment = FFFF16, and max value for Offset = FFFF16.

Now, let's convert FFFF:FFFF into its 20-bit linear address, bearing in mind 1610 is represented as 10 in hexadecimal.

So we get, FFFF:FFFF -> FFFF × 1016 + FFFF = FFFF0 (1 MiB - 16 bytes) + FFFF (64 KiB) = FFFFF + FFF0 = 1 MiB +
FFF0 bytes.

Note: FFFFF is hexadecimal and is equal to 1 MiB and FFF0 is equal to 64 KiB minus 16 bytes.

Moral of the story: From Real mode a program can actually refer to (1 MiB + 64 KiB - 16) bytes of memory.

Notice the use of the word "refer" and not "access". A program can refer to this much memory but whether it can access it
or not is dependent on the number of address lines actually present. So with the 8086 this was definitely not possible
because when programs made references to 1 MiB plus memory, the address that was put on the address lines was actually
more than 20-bits, and this resulted in wrapping around of the addresses.

For example, if a code is referring to 1 MiB, this will get wrapped around and point to location 0 in memory, likewise 1
MiB + 1 will wrap around to address 1 (or 0000:0001).

Now there were some super funky programmers around that time who manipulated this feature in their code, that the
addresses get wrapped around and made their code a little faster and a few bytes shorter. Using this technique it was
possible for them to access 32 KiB of top memory area (that is 32 KiB touching 1 MiB boundary) and 32 KiB memory of
the bottom memory area, without actually reloading their segment registers!

Simple maths you see, if in Segment:Offset representation you make Segment constant, then since Offset is a 16-bit value
therefore you can roam around in a 64 KiB (or 2 to the power 16) area of memory. Now if you make your segment register
point to 32 KiB below the 1 MiB mark you can access 32 KiB upwards to touch 1 MiB boundary and then 32 KiB further
which will ultimately get wrapped to the bottom most 32 KiB.

Now these super funky programmers overlooked the fact that processors with more address lines would be created. (Note:
Bill Gates has been attributed with saying, "Who would need more than 640 KB memory?", and these programmers were
probably thinking similarly.) In 1982, just 2 years after 8086, Intel released the 80286 processor with 24 address lines.
Though it was theoretically backward compatible with legacy 8086 programs, since it also supported Real Mode, many
8086 programs did not function correctly because they depended on out-of-bounds addresses getting wrapped around to
lower memory segments. So for the sake of compatibility IBM engineers routed the A20 address line (8086 had lines A0 -

The A20 Gate Saga



A19) through the Keyboard controller and provided a mechanism to enable/disable the A20 compatibility mode. Now if
you are wondering why the keyboard controller, the answer is that it had an unused pin. Since the 80286 would have been
marketed as having complete compatibility with the 8086 (that wasn't even yet out very long), upgraded customers would
be furious if the 80286 was not bug-for-bug compatible such that code designed for the 8086 would operate just as well on
the 80286, but faster.

X86 Instructions
These pages will discuss, in detail, the different instructions available in the basic x86 instruction set. For ease, and to
decrease the page size, the different instructions will be broken up into groups, and discussed individually.

Data Transfer Instructions
Control Flow Instructions
Arithmetic Instructions
Logic Instructions
Shift and Rotate Instructions
Other Instructions
x86 Interrupts

For more info, see the resources section.

The following template will be used for instructions that take no operands:

Instr

The following template will be used for instructions that take 1 operand:

Instr arg

The following template will be used for instructions that take 2 operands. Notice how the format of the instruction is
different for different assemblers.

Instr src, dest GAS Syntax

Instr dest, src Intel Syntax

 
The following template will be used for instructions that take 3 operands. Notice how the format of the instruction is
different for different assemblers.

Instr aux, src, dest GAS Syntax

Instr dest, src, aux Intel Syntax

Some instructions, especially when built for non-Windows platforms (i.e. Unix, Linux, etc.), require the use of suffixes to
specify the size of the data which will be the subject of the operation. Some possible suffixes are:

b (byte) = 8 bits.
w (word) = 16 bits.
l (long) = 32 bits.
q (quad) = 64 bits.

An example of the usage with the mov instruction on a 32-bit architecture, GAS syntax:

Conventions

Suffixes
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movl $0x000F, %eax  # Store the value F into the eax register 

On Intel Syntax you don't have to use the suffix. Based on the register name and the used immediate value the compiler
knows which data size to use.

MOV EAX, 0x000F 

Data Transfer
Some of the most important and most frequently used instructions are those that move data. Without them, there would be
no way for registers or memory to even have anything in them to operate on.

Data transfer instructions

mov src, dest GAS Syntax

mov dest, src Intel Syntax

 
Move

The mov instruction copies the src operand into the dest operand.

Operands

src

Immediate
Register
Memory

dest

Register
Memory

Modified flags

No FLAGS are modified by this instruction

Example

 .data 
  
 value: 
         .long   2 
  
 .text 
         .globl _start 
  
 _start: 
         movl    $6, %eax 
         # %eax is now 6 
  
         movw    %eax, value 
         # value is now 6 
  
         movl    $0, %ebx 
         # %ebx is now 0 
  
         movb    %al, %bl 
         # %ebx is now 6 
  
         movl    value, %ebx 
         # %ebx is now 6 

Move
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         movl    $value, %esi 
         # %esi is now the address of value 
  
         xorl    %ebx, %ebx 
         # %ebx is now 0 
  
         movw    value(, %ebx, 1), %bx 
         # %ebx is now 6 
  
 # Linux sys_exit 
         movl     $1, %eax 
         xorl    %ebx, %ebx 
         int     $0x80 

xchg src, dest GAS Syntax

xchg dest, src Intel Syntax

 
Exchange.

The xchg instruction swaps the src operand with the dest operand. It's like doing three move operations: from dest to a
temporary (another register), then from src to dest, then from the temporary to src, except that no register needs to be
reserved for temporary storage.

If one of the operands is a memory address, then the operation has an implicit LOCK prefix, that is, the exchange operation
is atomic. This can have a large performance penalty.

It's also worth noting that the common NOP (no op) instruction, 0x90, is the opcode for xchgl %eax, %eax.

Operands

src

Register
Memory

dest

Register
Memory

However, only one operand can be in memory: the other must be a register.

Modified flags

No FLAGS are modified by this instruction

Example

 .data 
  
 value: 
        .long   2 
  
 .text 
        .global _start 
  
 _start: 
        movl    $54, %ebx 
        xorl    %eax, %eax 
  
        xchgl   value, %ebx 
        # %ebx is now 2 
        # value is now 54 
  
        xchgw   %ax, value 
        # Value is now 0 
        # %eax is now 54 
  
        xchgb   %al, %bl 
        # %ebx is now 54 

Data swap
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        # %eax is now 2 
  
        xchgw   value(%eax), %ax 
        # value is now 0x00020000 = 131072 
        # %eax is now 0 
  
 # Linux sys_exit  
        mov     $1, %eax 
        xorl    %ebx, %ebx 
        int     $0x80 

 

cmpxchg arg2, arg1 GAS Syntax

cmpxchg arg1, arg2 Intel Syntax

 
Compare and exchange.

The cmpxchg instruction has two implicit operands AL/AX/EAX(depending on the size of arg1) and ZF(zero) flag. The
instruction compares arg1 to AL/AX/EAX and if they are equal sets arg1 to arg2 and sets the zero flag, otherwise it
sets AL/AX/EAX to arg1 and clears the zero flag. Unlike xchg there is not an implicit lock prefix and if the instruction
is required to be atomic then lock must be prefixed.

Operands

arg1

Register
Memory

arg2

Register

Modified flags

The ZF flag is modified by this instruction

Example

The following example shows how to use the cmpxchg instruction to create a spin lock which will be used to protect the
result variable. The last thread to grab the spin lock will get to set the final value of result:

global main  
 
extern printf 
extern pthread_create 
extern pthread_exit 
extern pthread_join 
 
section .data 
 align 4 
 sLock:  dd 0 ; The lock, values are: 
    ; 0 unlocked 
    ; 1 locked  
 tID1:  dd 0 
 tID2:  dd 0 
 fmtStr1: db "In thread %d with ID: %02x", 0x0A, 0 
 fmtStr2: db "Result %d", 0x0A, 0 
 
section .bss 
 align 4 
 result:  resd 1 
 
section .text 
 main:   ; Using main since we are using gcc to link 
 
    ; 
    ; Call pthread_create(pthread_t *thread, const pthread_attr_t *attr, 
    ;   void *(*start_routine) (void *), void *arg); 
    ; 
 push dword 0  ; Arg Four: argument pointer 
 push thread1  ; Arg Three: Address of routine 
 push dword 0  ; Arg Two: Attributes 
 push tID1  ; Arg One: pointer to the thread ID 
 call pthread_create 
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 push dword 0  ; Arg Four: argument pointer 
 push thread2  ; Arg Three: Address of routine 
 push dword 0  ; Arg Two: Attributes 
 push tID2  ; Arg One: pointer to the thread ID 
 call pthread_create 
 
    ; 
    ; Call int pthread_join(pthread_t thread, void **retval) ; 
    ; 
 push dword 0  ; Arg Two: retval 
 push dword [tID1] ; Arg One: Thread ID to wait on 
 call pthread_join 
 push dword 0  ; Arg Two: retval 
 push dword [tID2] ; Arg One: Thread ID to wait on 
 call pthread_join 
 
 push dword [result] 
 push dword fmtStr2 
 call printf 
 add esp, 8  ; Pop stack 2 times 4 bytes 
 
 call exit 
 
thread1: 
 pause 
 push dword [tID1] 
 push dword 1  
 push dword fmtStr1 
 call printf 
 add esp, 12  ; Pop stack 3 times 4 bytes 
 
 call spinLock 
 
 mov [result], dword 1 
 call spinUnlock 
 
 push dword 0  ; Arg one: retval 
 call pthread_exit 
 
thread2: 
 pause 
 push dword [tID2] 
 push dword 2  
 push dword fmtStr1 
 call printf 
 add esp, 12  ; Pop stack 3 times 4 bytes 
 
 call spinLock 
 
 mov [result], dword 2 
 call spinUnlock 
 
 push dword 0  ; Arg one: retval 
 call pthread_exit 
 
spinLock: 
 push ebp 
 mov ebp, esp 
 mov edx, 1  ; Value to set sLock to 
spin: mov eax, [sLock] ; Check sLock 
 test eax, eax ; If it was zero, maybe we have the lock 
 jnz spin  ; If not try again 
 ; 
 ; Attempt atomic compare and exchange: 
 ; if (sLock == eax): 
 ; sLock  <- edx 
 ; zero flag <- 1 
 ; else: 
 ; eax  <- edx 
 ; zero flag <- 0 
 ; 
 ; If sLock is still zero then it will have the same value as eax and 
 ; sLock will be set to edx which is one and therefore we aquire the 
 ; lock. If the lock was acquired between the first test and the 
 ; cmpxchg then eax will not be zero and we will spin again. 
 ; 
 lock cmpxchg [sLock], edx 
 test eax, eax 
 jnz spin 
 pop ebp 
 ret 
 
spinUnlock: 
 push ebp 
 mov ebp, esp 
 mov eax, 0 
 xchg eax, [sLock] 
 pop ebp 
 ret 
 
exit: 
    ; 
    ; Call exit(3) syscall 
    ; void exit(int status) 
    ; 
 mov ebx, 0  ; Arg one: the status 



 mov eax, 1  ; Syscall number: 
 int  0x80 

In order to assemble, link and run the program we need to do the following:

$ nasm -felf32 -g cmpxchgSpinLock.asm 
$ gcc -o cmpxchgSpinLock cmpxchgSpinLock.o -lpthread 
$ ./cmpxchgSpinLock 

movz src, dest GAS Syntax

movzx dest, src Intel Syntax

Move zero extend

The movz instruction copies the src operand in the dest operand and pads the remaining bits not provided by src with
zeros (0).

This instruction is useful for copying a small, unsigned value to a bigger register.

Operands

src

Register
Memory

dest

Register

Modified flags

No FLAGS are modified by this instruction

Example

 .data 
  
 byteval: 
        .byte   204 
  
 .text 
        .global _start 
  
 _start: 
        movzbw  byteval, %ax 
        # %eax is now 204 
  
        movzwl  %ax, %ebx 
        # %ebx is now 204 
  
        movzbl  byteval, %esi 
        # %esi is now 204 
  
 # Linux sys_exit  
        mov     $1, %eax 
        xorl    %ebx, %ebx 
        int     $0x80 

movs src, dest GAS Syntax

movsx dest, src Intel Syntax

Move sign extend.

Move with zero extend

Move with sign extend
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The movs instruction copies the src operand in the dest operand and pads the remaining bits not provided by src with
the sign bit (the MSB) of src.

This instruction is useful for copying a signed small value to a bigger register.

Operands

src

Register
Memory

dest

Register

Modified flags

No FLAGS are modified by this instruction

Example

 .data 
  
 byteval: 
        .byte   -24 # = 0xe8 
  
 .text 
        .global _start 
  
 _start: 
        movsbw  byteval, %ax 
        # %ax is now -24 = 0xffe8 
  
        movswl  %ax, %ebx 
        # %ebx is now -24 = 0xffffffe8 
  
        movsbl  byteval, %esi 
        # %esi is now -24 = 0xffffffe8 
  
 # Linux sys_exit  
        mov     $1, %eax 
        xorl    %ebx, %ebx 
        int     $0x80 

movsb

Move byte

The movsb instruction copies one byte from the memory location specified in esi to the location specified in edi. If the
direction flag is cleared, then esi and edi are incremented after the operation. Otherwise, if the direction flag is set, then
the pointers are decremented. In that case the copy would happen in the reverse direction, starting at the highest address and
moving toward lower addresses until ecx is zero.

Operands

None.

Modified flags

No FLAGS are modified by this instruction

Example

section .text 
  ; copy mystr into mystr2 
  mov esi, mystr    ; loads address of mystr into esi 
  mov edi, mystr2   ; loads address of mystr2 into edi 

Move String



  cld               ; clear direction flag (forward) 
  mov ecx,6 
  rep movsb         ; copy six times 
  
section .bss 
  mystr2: resb 6 
  
section .data 
  mystr db "Hello", 0x0 

 

movsw

Move word

The movsw instruction copies one word (two bytes) from the location specified in esi to the location specified in edi. It
basically does the same thing as movsb, except with words instead of bytes.

Operands

None.

Modified flags

No FLAGS are modified by this instruction

Example

section .code 
  ; copy mystr into mystr2 
  mov esi, mystr 
  mov edi, mystr2 
  cld 
  mov ecx,4 
  rep movsw 
  ; mystr2 is now AaBbCca\0 
  
section .bss 
  mystr2: resb 8 
  
section .data 
  mystr db "AaBbCca", 0x0 

lea src, dest GAS Syntax

lea dest, src Intel Syntax

 
Load Effective Address

The lea instruction calculates the address of the src operand and loads it into the dest operand.

Operands

src

Immediate
Register
Memory

dest

Register

Modified flags

Load Effective Address
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No FLAGS are modified by this instruction

Note Load Effective Address calculates its src operand in the same way as the mov instruction does, but rather than
loading the contents of that address into the dest operand, it loads the address itself.

lea can be used not only for calculating addresses, but also general-purpose unsigned integer arithmetic (with the caveat
and possible advantage that FLAGS are unmodified). This can be quite powerful, since the src operand can take up to 4
parameters: base register, index register, scalar multiplier and displacement, e.g. [eax + edx*4 -4] (Intel syntax) or
-4(%eax, %edx, 4) (GAS syntax). The scalar multiplier is limited to constant values 1, 2, 4, or 8 for byte, word,
double word or quad word offsets respectively. This by itself allows for multiplication of a general register by constant
values 2, 3, 4, 5, 8 and 9, as shown below (using NASM syntax):

lea ebx, [ebx*2]      ; Multiply ebx by 2 
lea ebx, [ebx*8+ebx]  ; Multiply ebx by 9, which totals ebx*18 

Data transfer instructions of 8086 microprocessor
General purpose byte or word transfer instructions:

MOV: copy byte or word from specified source to specified destination
PUSH: copy specified word to top of stack.
POP: copy word from top of stack to specified location
PUSHA: copy all registers to stack
POPA: copy words from stack to all registers.
XCHG: Exchange bytes or exchange words
XLAT: translate a byte in AL using a table in memory.

These are I/O port transfer instructions:

IN: copy a byte or word from specific port to accumulator
OUT: copy a byte or word from accumulator to specific port

Special address transfer Instructions:

LEA: load effective address of operand into specified register
LDS: load DS register and other specified register from memory
LES: load ES register and other specified register from memory

Flag transfer instructions:

LAHF: load AH with the low byte of flag register
SAHF: Stores AH register to low byte of flag register
PUSHF: copy flag register to top of stack
POPF: copy top of stack word to flag register

 

Control Flow
Almost all programming languages have the ability to change the order in which statements are evaluated, and assembly is
no exception. The instruction pointer (EIP) register contains the address of the next instruction to be executed. To change
the flow of control, the programmer must be able to modify the value of EIP. This is where control flow functions come in.

mov eip, label   ; wrong 
jmp label        ; right 
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test arg0, arg1 GAS Syntax

test arg1, arg0 Intel Syntax

 
Performs a bit-wise logical and on arg0 and arg1 the result of which we will refer to as commonBits and sets the
ZF(zero), SF(sign) and PF (parity) flags based on commonBits. CommonBits is then discarded.

 
Operands

arg0

Register
Immediate

arg1

AL/AX/EAX (only if arg0 is an immediate value)
Register
Memory

Modified flags

SF ≔ MostSignificantBit(commonBits)
ZF ≔ (commonBits = 0), so a set ZF means, arg0 and arg1 do not have any set bits in common
PF ≔ BitWiseXorNor(commonBits[Max-1:0]), so PF is set if and only if commonBits[Max-1:0] has an even
number of 1 bits
CF ≔ 0
OF ≔ 0
AF is undefined

Application

passing the same register twice: test rax, rax

SF becomes the sign of rax, which is a simple test for non-negativity
ZF is set if rax is zero
PF is set if rax has an even number of set bits

 

cmp subtrahend, minuend GAS Syntax

cmp minuend, subtrahend Intel Syntax

 
Performs a comparison operation between minuend and subtrahend. The comparison is performed by a (signed)
subtraction of subtrahend from minuend, the results of which can be called difference. Difference is then
discarded. If subtrahend is an immediate value it will be sign extended to the length of minuend. The EFLAGS
register is set in the same manner as a sub instruction.

Note that the GAS/AT&T syntax can be rather confusing, as for example cmp $0, %rax followed by jl branch will
branch if %rax < 0 (and not the opposite as might be expected from the order of the operands).

 
Operands

minuend

Comparison Instructions
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AL/AX/EAX (only if subtrahend is immediate)
Register
Memory

subtrahend

Register
Immediate
Memory

 
Modified flags

SF ≔ MostSignificantBit(difference), so a unset SF means the difference is non-negative
(minuend ≥ subtrahend [NB: signed comparison])
ZF ≔ (difference = 0)
PF ≔ BitWiseXorNor(difference[Max-1:0])
CF, OF and AF

The jump instructions allow the programmer to (indirectly) set the value of the EIP register. The location passed as the
argument is usually a label. The first instruction executed after the jump is the instruction immediately following the label.
All of the jump instructions, with the exception of jmp, are conditional jumps, meaning that program flow is diverted
only if a condition is true. These instructions are often used after a comparison instruction (see above), but since many
other instructions set flags, this order is not required.

See chapter “X86 architecture”, § “EFLAGS register” for more information about the flags and their meaning.

jmp loc

Loads EIP with the specified address (i.e. the next instruction executed will be the one specified by jmp).

je loc

ZF = 1

Loads EIP with the specified address, if operands of previous cmp instruction are equal. For example:

mov ecx, $5 
mov edx, $5 
cmp ecx, edx 
je equal 
; if it did not jump to the label equal, 
; then this means ecx and edx are not equal. 
equal: 
; if it jumped here, then this means ecx and edx are equal 

jne loc

ZF = 0

Loads EIP with the specified address, if operands of previous cmp instruction are not equal.

Jump Instructions

Unconditional Jumps

Jump if Equal

Jump if Not Equal
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jg loc

SF = OF and ZF = 0

Loads EIP with the specified address, if the minuend of the previous cmp instruction is greater than the second (performs
signed comparison).

jge loc

SF = OF or ZF = 1

Loads EIP with the specified address, if the minuend of the of previous cmp instruction is greater than or equal to the
subtrahend (performs signed comparison).

ja loc

CF = 0 and ZF = 0

Loads EIP with the specified address, if the minuend of the previous cmp instruction is greater than the subtrahend.
ja is the same as jg, except that it performs an unsigned comparison.

That means, the following piece of code always jumps (unless rbx is -1, too), because negative one is represented as all
bits set in the two's complement.

mov rax, -1 // rax := -1 
cmp rax, rbx 
ja loc 

Interpreting all bits set (without treating any bit as the sign) has the value 2ⁿ-1 (where n is the length of the register). That is
the largest unsigned value a register can hold.

jae loc

CF = 0 or ZF = 1

Loads EIP with the specified address, if the minuend of previous cmp instruction is greater than or equal to the
subtrahend. jae is the same as jge, except that it performs an unsigned comparison.

jl loc

The criterion required for a jl is that SF ≠ OF. It loads EIP with the specified address, if the criterion is met. So either SF
or OF can be set, but not both in order to satisfy this criterion. If we take the sub (which is basically what a cmp does)
instruction as an example, we have:

minuend - subtrahend

Jump if Greater

Jump if Greater or Equal

Jump if Above (unsigned comparison)

Jump if Above or Equal (unsigned comparison)

Jump if Lesser



With respect to sub and cmp there are several cases that fulfill this criterion:

1. minuend < subtrahend and the operation does not have overflow
2. minuend > subtrahend and the operation has an overflow

 
In the first case SF will be set but not OF and in second case OF will be set but not SF since the overflow will reset the
most significant bit to zero and thus preventing SF being set. The SF ≠ OF criterion avoids the cases where:

1. minuend > subtrahend and the operation does not have overflow
2. minuend < subtrahend and the operation has an overflow
3. minuend = subtrahend

In the first case neither SF nor OF are set, in the second case OF will be set and SF will be set since the overflow will reset
the most significant bit to one and in the last case neither SF nor OF will be set.

jle loc

SF ≠ OF or ZF = 1.

Loads EIP with the specified address, if the minuend of previous cmp instruction is lesser than or equal to the
subtrahend. See the jl section for a more detailed description of the criteria.

jb loc

CF = 1

Loads EIP with the specified address, if first operand of previous CMP instruction is lesser than the second. jb is the same
as jl, except that it performs an unsigned comparison.

mov rax, 0   ; rax ≔ 0 
cmp rax, rbx ; rax ≟ rbx 
jb loc       ; always jumps, unless rbx is also 0 

jbe loc

CF = 1 or ZF = 1

Loads EIP with the specified address, if minuend of previous cmp instruction is lesser than or equal to the
subtrahend. jbe is the same as jle, except that it performs an unsigned comparison.

jo loc

OF = 1

Loads EIP with the specified address, if the overflow bit is set on a previous arithmetic expression.

Jump if Less or Equal

Jump if Below (unsigned comparison)

Jump if Below or Equal (unsigned comparison)

Jump if Overflow



jno loc

OF = 0

Loads EIP with the specified address, if the overflow bit is not set on a previous arithmetic expression.

jz loc

ZF = 1

Loads EIP with the specified address, if the zero bit is set from a previous arithmetic expression. jz is identical to je.

jnz loc

ZF = 0

Loads EIP with the specified address, if the zero bit is not set from a previous arithmetic expression. jnz is identical to
jne.

js loc

SF = 1

Loads EIP with the specified address, if the sign bit is set from a previous arithmetic expression.

jns loc

SF = 0

Loads EIP with the specified address, if the sign bit is not set from a previous arithmetic expression.

jcxz loc

CX = 0

jecxz loc

ECX = 0

jrcxz loc

RCX = 0

Jump if Not Overflow

Jump if Zero

Jump if Not Zero

Jump if Signed

Jump if Not Signed

Jump if counter register is zero



Loads EIP with the specified address, if the counter register is zero.

call proc

Pushes the address of the instruction that follows the call call, i.e. usually the next line in your source code, onto the top
of the stack, and then jumps to the specified location. This is used mostly for subroutines.

ret [val]

Loads the next value on the stack into EIP, and then pops the specified number of bytes off the stack. If val is not
supplied, the instruction will not pop any values off the stack after returning.

loop arg

The loop instruction decrements ECX and jumps to the address specified by arg unless decrementing ECX caused its
value to become zero. For example:

 mov ecx, 5 ; ecx ≔ 5 
head: 
 ; the code here would be executed 5 times 
 loop head 

loop does not set any flags.

loopcc arg

These loop instructions decrement ECX and jump to the address specified by arg if their condition is satisfied (that is, a
specific flag is set), unless decrementing ECX caused its value to become zero.

loope loop if equal
loopne loop if not equal
loopnz loop if not zero
loopz loop if zero

That way, only testing for a non-zero ECX can be combined with testing ZF. Other flags can not be tested for, say there is
no loopnc “loop while ECX ≠ 0 and CF unset”.

enter arg

enter creates a stack frame with the specified amount of space allocated on the stack.

leave

leave destroys the current stack frame, and restores the previous frame. Using Intel syntax this is equivalent to:

mov esp, ebp ; esp ≔ ebp 
pop ebp 

Function Calls

Loop Instructions

Enter and Leave



This will set EBP and ESP to their respective value before the function prologue began therefore reversing any
modification to the stack that took place during the prologue.

hlt

Halts the processor. Execution will be resumed after processing next hardware interrupt, unless IF is cleared.

nop

No operation. This instruction doesn't do anything, but wastes (an) instruction cycle(s) in the processor.

This instruction is often represented as an xchg operation with the operands EAX and EAX (an operation without side-
effects), because there is no designated opcode for doing nothing. This just as a passing remark, so that you do not get
confused with disassembled code.

lock

Asserts #LOCK prefix on next instruction.

wait

Waits for the FPU to finish its last calculation.

Arithmetic

Arithmetic instructions take two operands: a destination and a source. The destination must be a register or a memory
location. The source may be either a memory location, a register, or a constant value. Note that at least one of the two must
be a register, because operations may not use a memory location as both a source and a destination.

 

add src, dest GAS Syntax

add dest, src Intel Syntax

This adds src to dest. If you are using the MASM syntax, then the result is stored in the first argument, if you are using
the GAS syntax, it is stored in the second argument.

 

sub src, dest GAS Syntax

sub dest, src Intel Syntax

Like ADD, only it subtracts source from destination instead. In C: dest -= src;

 

mul arg

This multiplies arg by the value of corresponding byte-length in the AX register.

Other Control Instructions

Arithmetic instructions
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operand size 1 byte 2 bytes 4 bytes

other operand AL AX EAX

higher part of result stored in AH DX EDX

lower part of result stored in AL AX EAX

result registers used by mul

In the second case, the target is not EAX for backward compatibility with code written for older processors.

 

imul arg

As mul, only signed. The imul instruction has the same format as mul, but also accepts two other formats like so:

 

imul src, dest GAS Syntax

imul dest, src Intel Syntax

This multiplies src by dest. If you are using the NASM syntax, then the result is stored in the first argument, if you are
using the GAS syntax, it is stored in the second argument.

imul aux, src, dest GAS Syntax

imul dest, src, aux Intel Syntax

This multiplies src by aux and places it into dest. If you are using the NASM syntax, then the result is stored in the first
argument, if you are using the GAS syntax, it is stored in the third argument.

 

div arg

This divides the value in the dividend register(s) by arg, see table below.

 

divisor size 1 byte 2 bytes 4 bytes

dividend AX DX:AX EDX:EAX

remainder stored in AH DX EDX

quotient stored in AL AX EAX

result registers for div

The colon (:) means concatenation. With divisor size 4, this means that EDX are the bits 32-63 and EAX are bits 0-31 of the
input number (with lower bit numbers being less significant, in this example).

As you typically have 32-bit input values for division, you often need to use CDQ to sign-extend EAX into EDX just
before the division.

If quotient does not fit into quotient register, arithmetic overflow interrupt occurs. All flags are in undefined state after the
operation.

 

idiv arg

https://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax
https://en.wikibooks.org/wiki/X86_Assembly/MASM_Syntax
https://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax
https://en.wikibooks.org/wiki/X86_Assembly/MASM_Syntax
https://en.wikipedia.org/wiki/X86_instruction_listings#Added_with_80386


As div, only signed.

 

neg arg

Arithmetically negates the argument (i.e. two's complement negation).

adc src, dest GAS Syntax

adc dest, src Intel Syntax

 
Add with carry. Adds src + CF to dest, storing result in dest. Usually follows a normal add instruction to deal with
values twice as large as the size of the register. In the following example, source contains a 64-bit number which will be
added to destination.

mov eax, [source] ; read low 32 bits 
mov edx, [source+4] ; read high 32 bits 
add [destination], eax ; add low 32 bits 
adc [destination+4], edx ; add high 32 bits, plus carry 

 

sbb src, dest GAS Syntax

sbb dest, src Intel Syntax

Subtract with borrow. Subtracts src + CF from dest, storing result in dest. Usually follows a normal sub instruction to
deal with values twice as large as the size of the register.

inc arg

Increments the register value in the argument by 1. Performs much faster than add arg, 1.

 

dec arg

Decrements the register value in the argument by 1. Performs much faster than sub arg, 1.

The lea instruction can be used for arithmetic, especially on pointers. See chapter “data transfer”, § “load effective
address”.

Logic

The instructions on this page deal with bit-wise logical instructions. For more information about bit-wise logic, see Digital
Circuits/Logic Operations.

Carry Arithmetic Instructions

Increment and Decrement

Pointer arithmetic

Logical instructions
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and src, dest GAS Syntax

and dest, src Intel Syntax

 
Performs a bit-wise and of the two operands, and stores the result in dest. For example:

movl $0x1, %edx ; edx ≔ 1 
movl $0x0, %ecx ; ecx ≔ 0 
andl %edx, %ecx ; ecx ≔ edx ∧ ecx 
; here ecx would be 0 because 1 ∧ 0 ⇔ 0 

 

or src, dest GAS Syntax

or dest, src Intel Syntax

 
Performs a bit-wise or of the two operands, and stores the result in dest. For example:

movl $0x1, %edx ; edx ≔ 1 
movl $0x0, %ecx ; ecx ≔ 0 
orl  %edx, %ecx ; ecx ≔ edx ∨ ecx 
; here ecx would be 1 because 1 ∨ 0 ⇔ 1 

 

xor src, dest GAS Syntax

xor dest, src Intel Syntax

 
Performs a bit-wise xor of the two operands, and stores the result in dest. For example:

movl $0x1, %edx ; edx ≔ 1 
movl $0x0, %ecx ; ecx ≔ 0 
xorl %edx, %ecx ; ecx ≔ edx ⊕ ecx 
; here ecx would be 1 because 1 ⊕ 0 ⇔ 1 

not arg

Performs a bit-wise inversion of arg. For example:

movl $0x1, %edx ; edx ≔ 1 
notl %edx ; edx ≔ ¬edx 
; here edx would be 0xFFFFFFFE because a bitwise NOT 0x00000001 = 0xFFFFFFFE 

Shift and Rotate
 

In a logical shift instruction (also referred to as unsigned shift), the bits that slide off the end disappear (except for the last,
which goes into the carry flag), and the spaces are always filled with zeros. Logical shifts are best used with unsigned
numbers.

 

Logical Shift Instructions

https://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax
https://en.wikibooks.org/wiki/X86_Assembly/MASM_Syntax
https://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax
https://en.wikibooks.org/wiki/X86_Assembly/MASM_Syntax
https://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax
https://en.wikibooks.org/wiki/X86_Assembly/MASM_Syntax


shr src, dest GAS Syntax

shr dest, src Intel Syntax

 
Logical shift dest to the right by src bits.

 

shl src, dest GAS Syntax

shl dest, src Intel Syntax

 
Logical shift dest to the left by src bits.

Examples (GAS Syntax):

movw   $ff00,%ax        # ax=1111.1111.0000.0000 (0xff00, unsigned 65280, signed -256)  
shrw   $3,%ax           # ax=0001.1111.1110.0000 (0x1fe0, signed and unsigned 8160) 
                        # (logical shifting unsigned numbers right by 3 
                        #   is like integer division by 8) 
shlw   $1,%ax           # ax=0011.1111.1100.0000 (0x3fc0, signed and unsigned 16320)  
                        # (logical shifting unsigned numbers left by 1 
                        #   is like multiplication by 2) 

In an arithmetic shift (also referred to as signed shift), like a logical shift, the bits that slide off the end disappear (except
for the last, which goes into the carry flag). But in an arithmetic shift, the spaces are filled in such a way to preserve the
sign of the number being slid. For this reason, arithmetic shifts are better suited for signed numbers in two's complement
format.

 

sar src, dest GAS Syntax

sar dest, src Intel Syntax

 
Arithmetic shift dest to the right by src bits. Spaces are filled with sign bit (to maintain sign of original value), which is
the original highest bit.

 

sal src, dest GAS Syntax

sal dest, src Intel Syntax

 
Arithmetic shift dest to the left by src bits. The bottom bits do not affect the sign, so the bottom bits are filled with
zeros. This instruction is synonymous with SHL.

Examples (GAS Syntax):

movw   $ff00,%ax        # ax=1111.1111.0000.0000 (0xff00, unsigned 65280, signed -256) 
salw   $2,%ax           # ax=1111.1100.0000.0000 (0xfc00, unsigned 64512, signed -1024) 
                        # (arithmetic shifting left by 2 is like multiplication by 4 for 
                        #   negative numbers, but has an impact on positives with most 
                        #   significant bit set (i.e. set bits shifted out)) 
sarw   $5,%ax           # ax=1111.1111.1110.0000 (0xffe0, unsigned 65504, signed -32) 
                        # (arithmetic shifting right by 5 is like integer division by 32 
                        #   for negative numbers) 

Arithmetic Shift Instructions

Extended Shift Instructions
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The names of the double precision shift operations are somewhat misleading, hence they are listed as extended shift
instructions on this page.

They are available for use with 16- and 32-bit data entities (registers/memory locations). The src operand is always a
register, the dest operand can be a register or memory location, the cnt operand is an immediate byte value or the CL
register. In 64-bit mode it is possible to address 64-bit data as well.

 

shld cnt, src, dest GAS Syntax

shld dest, src, cnt Intel Syntax

The operation performed by shld is to shift the most significant cnt bits out of dest, but instead of filling up the least
significant bits with zeros, they are filled with the most significant cnt bits of src.

 

shrd cnt, src, dest GAS Syntax

shrd dest, src, cnt Intel Syntax

Likewise, the shrd operation shifts the least significant cnt bits out of dest, and fills up the most significant cnt bits
with the least significant bits of the src operand.

Intel's nomenclature is misleading, in that the shift does not operate on double the basic operand size (i.e. specifying 32-bit
operands doesn't make it a 64-bit shift): the src operand always remains unchanged.

Also, Intel's manual[2] states that the results are undefined when cnt is greater than the operand size, but at least for 32-
and 64-bit data sizes it has been observed that shift operations are performed by (cnt mod n), with n being the data size.

Examples (GAS Syntax):

xorw   %ax,%ax          # ax=0000.0000.0000.0000 (0x0000) 
notw   %ax              # ax=1111.1111.1111.1111 (0xffff) 
movw   $0x5500,%bx      # bx=0101.0101.0000.0000 
shrdw  $4,%ax,%bx       # bx=1111.0101.0101.0000 (0xf550), ax is still 0xffff 
shldw  $8,%bx,%ax       # ax=1111.1111.1111.0101 (0xfff5), bx is still 0xf550 

Other examples (decimal numbers are used instead of binary number to explain the concept)

# ax = 1234 5678 
# bx = 8765 4321 
shrd   $3, %ax, %bx     # ax = 1234 5678 bx = 6788 7654  

# ax = 1234 5678 
# bx = 8765 4321 
shld   $3, %ax, %bx     # bx = 5432 1123 ax = 1234 5678 

In a rotate instruction, the bits that slide off the end of the register are fed back into the spaces.

 

ror src, dest GAS Syntax

ror dest, src Intel Syntax

 
Rotate dest to the right by src bits.

Rotate Instructions
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rol src, dest GAS Syntax

rol dest, src Intel Syntax

 
Rotate dest to the left by src bits.

Like with shifts, the rotate can use the carry bit as the "extra" bit that it shifts through.

 

rcr src, dest GAS Syntax

rcr dest, src Intel Syntax

 
Rotate dest to the right by src bits with carry.

 

rcl src, dest GAS Syntax

rcl dest, src Intel Syntax

 
Rotate dest to the left by src bits with carry.

Unless stated, these instructions can take either one or two arguments. If only one is supplied, it is assumed to be a register
or memory location and the number of bits to shift/rotate is one (this may be dependent on the assembler in use, however).
shrl $1, %eax is equivalent to shrl %eax (GAS syntax).

Other Instructions

push arg

This instruction decrements the stack pointer and stores the data specified as the argument into the location pointed to by
the stack pointer.

pop arg

This instruction loads the data stored in the location pointed to by the stack pointer into the argument specified and then
increments the stack pointer. For example:

1. bh
2. Intel® 64 and IA-32 Architectures Software Developer's Manual Volume 2 (http://download.intel.com/product

s/processor/manual/325383.pdf) (PDF, 6.2 MB)

Rotate With Carry Instructions

Number of arguments

Notes

Stack Instructions
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mov eax, 5 
mov ebx, 6 

push eax  The stack is now: [5]

push ebx  The stack is now: [6] [5]

pop eax  The topmost item (which is 6) is now stored in eax. The stack is now: [5]

pop ebx  ebx is now equal to 5. The stack is now empty.

pushf

This instruction decrements the stack pointer and then loads the location pointed to by the stack pointer with the contents of
the flag register.

popf

This instruction loads the flag register with the contents of the memory location pointed to by the stack pointer and then
increments the contents of the stack pointer.

pusha

This instruction pushes all the general purpose registers onto the stack in the following order: AX, CX, DX, BX, SP, BP, SI,
DI. The value of SP pushed is the value before the instruction is executed. It is useful for saving state before an operation
that could potentially change these registers.

popa

This instruction pops all the general purpose registers off the stack in the reverse order of PUSHA. That is, DI, SI, BP, SP,
BX, DX, CX, AX. Used to restore state after a call to PUSHA.

pushad

This instruction works similarly to pusha, but pushes the 32-bit general purpose registers onto the stack instead of their 16-
bit counterparts.

popad

This instruction works similarly to popa, but pops the 32-bit general purpose registers off of the stack instead of their 16-bit
counterparts.

While the flags register is used to report on results of executed instructions (overflow, carry, etc.), it also contains flags that
affect the operation of the processor. These flags are set and cleared with special instructions.

Flags instructions

Interrupt Flag

https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture#EFLAGS_Register


The IF flag tells a processor if it should accept hardware interrupts. It should be kept set under normal execution. In fact, in
protected mode, neither of these instructions can be executed by user-level programs.

sti

Sets the interrupt flag. If set, the processor can accept interrupts from peripheral hardware.

cli

Clears the interrupt flag. Hardware interrupts cannot interrupt execution. Programs can still generate interrupts, called
software interrupts, and change the flow of execution. Non-maskable interrupts (NMI) cannot be blocked using this
instruction.

The DF flag tells the processor which way to read data when using string instructions. That is, whether to decrement or
increment the esi and edi registers after a movs instruction.

std

Sets the direction flag. Registers will decrement, reading backwards.

cld

Clears the direction flag. Registers will increment, reading forwards.

The CF flag is often modified after arithmetic instructions, but it can be set or cleared manually as well.

stc

Sets the carry flag.

clc

Clears the carry flag.

cmc

Complements (inverts) the carry flag.

sahf

Stores the content of AH register into the lower byte of the flag register.

lahf

Loads the AH register with the contents of the lower byte of the flag register.

Direction Flag

Carry Flag

Other

https://en.wikibooks.org/wiki/X86_Assembly/Data_Transfer#Move_String


in src, dest GAS Syntax

in dest, src Intel Syntax

 
The IN instruction almost always has the operands AX and DX (or EAX and EDX) associated with it. DX (src) frequently
holds the port address to read, and AX (dest) receives the data from the port. In Protected Mode operating systems, the IN
instruction is frequently locked, and normal users can't use it in their programs.

 

out src, dest GAS Syntax

out dest, src Intel Syntax

 
The OUT instruction is very similar to the IN instruction. OUT outputs data from a given register (src) to a given output
port (dest). In protected mode, the OUT instruction is frequently locked so normal users can't use it.

 

These instructions were added with the Pentium II.

sysenter

This instruction causes the processor to enter protected system mode (supervisor mode or "kernel mode").

sysexit

This instruction causes the processor to leave protected system mode, and enter user mode.

RDTSC

RDTSC was introduced in the Pentium processor, the instruction reads the number of clock cycles since reset and returns
the value in EDX:EAX. This can be used as a way of obtaining a low overhead, high resolution CPU timing. Although with
modern CPU microarchitecture(multi-core, hyperthreading) and multi-CPU machines you are not guaranteed synchronized
cycle counters between cores and CPUs. Also the CPU frequency may be variable due to power saving or dynamic
overclocking. So the instruction may be less reliable than when it was first introduced and should be used with care when
being used for performance measurements.

It is possible to use just the lower 32-bits of the result but it should be noted that on a 600 MHz processor the register
would overflow every 7.16 seconds:

While using the full 64-bits allows for 974.9 years between overflows:

The following program (using NASM syntax) is an example of using RDTSC to measure the number of cycles a small
block takes to execute:

I/O Instructions

System Instructions

Misc Instructions
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global main  
 
extern printf 
 
section .data 
 align 4 
 a: dd 10.0 
 b: dd 5.0 
 c: dd 2.0 
 fmtStr: db "edx:eax = %llu edx = %d eax = %d", 0x0A, 0 
 
section .bss 
 align 4 
 cycleLow: resd 1 
 cycleHigh: resd 1 
 result:  resd 1 
 
section .text 
 main:   ; Using main since we are using gcc to link 
 
; 
; op dst,  src 
; 
 xor eax, eax 
 cpuid 
 rdtsc 
 mov [cycleLow], eax 
 mov [cycleHigh], edx  
 
    ; 
    ; Do some work before measurements  
    ; 
 fld dword [a] 
 fld dword [c] 
 fmulp st1 
 fmulp st1 
 fld dword [b] 
 fld dword [b] 
 fmulp st1 
 faddp st1 
 fsqrt 
 fstp dword [result] 
    ; 
    ; Done work 
    ; 
 
 cpuid 
 rdtsc 
    ; 
    ; break points so we can examine the values 
    ; before we alter the data in edx:eax and 
    ; before we print out the results. 
    ; 
break1: 
 sub eax, [cycleLow] 
 sbb edx, [cycleHigh] 
break2: 
 push eax 
 push edx 
 push  edx 
 push eax 
 push dword fmtStr 
 call printf 
 add esp, 20  ; Pop stack 5 times 4 bytes 
 
 
    ; 
    ; Call exit(3) syscall 
    ; void exit(int status) 
    ; 
 mov ebx, 0  ; Arg one: the status 
 mov eax, 1  ; Syscall number: 
 int  0x80 

In order to assemble, link and run the program we need to do the following:

$ nasm -felf -g rdtsc.asm -l rdtsc.lst 
$ gcc -m32 -o rdtsc rdtsc.o 
$ ./rdtsc 

X86 Interrupts
Interrupts are special routines that are defined on a per-system basis. This means that the interrupts on one system might be
different from the interrupts on another system. Therefore, it is usually a bad idea to rely heavily on interrupts when you are
writing code that needs to be portable.



In modern operating systems, the programmer often doesn't need to use interrupts. In Windows, for example, the
programmer conducts business with the Win32 API. However, these API calls interface with the kernel, and the kernel will
often trigger interrupts to perform different tasks. In older operating systems (specifically DOS), the programmer didn't
have an API to use, and so they had to do all their work through interrupts.

int arg

This instruction issues the specified interrupt. For instance:

int 0x0A 

Calls interrupt 10 (0x0A (hex) = 10 (decimal)).

There are 3 types of interrupts: Hardware Interrupts, Software Interrupts and Exceptions.

Hardware interrupts are triggered by hardware devices. For instance, when you type on your keyboard, the keyboard
triggers a hardware interrupt. The processor stops what it is doing, and executes the code that handles keyboard input
(typically reading the key you pressed into a buffer in memory). Hardware interrupts are typically asynchronous - their
occurrence is unrelated to the instructions being executed at the time they are raised.

There are also a series of software interrupts that are usually used to transfer control to a function in the operating system
kernel. Software interrupts are triggered by the instruction int. For example, the instruction "int 14h" triggers interrupt
0x14. The processor then stops the current program, and jumps to the code to handle interrupt 14. When interrupt handling
is complete, the processor returns flow to the original program.

Exceptions are caused by exceptional conditions in the code which is executing, for example an attempt to divide by zero or
access a protected memory area. The processor will detect this problem, and transfer control to a handler to service the
exception. This handler may re-execute the offending code after changing some value (for example, the zero dividend), or
if this cannot be done, the program causing the exception may be terminated.

A great list of interrupts for DOS and related systems is at Ralf Brown's Interrupt List. (http://www.ctyme.com/rbrown.ht
m)

x86 Assemblers
There are a number of different assemblers available for x86 architectures. This page will list some of them, and will
discuss where to get the assemblers, what they are good for, and where they are used the most.

What is an Interrupt?

Interrupt Instruction

Types of Interrupts

Hardware Interrupts

Software Interrupts

Exceptions

Further Reading

GNU Assembler (GAS)
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The GNU assembler is most common as the assembly back-end to the GCC compiler. One of the most compelling reasons
to learn to program GAS (as it is frequently abbreviated) is to write inline assembly instructions (assembly code embedded
in C source code), as these instructions (when compiled by the gcc) need to be in GAS syntax. GAS uses the AT&T syntax
for writing the assembly language, which some people claim is more complicated, but other people say it is more
informative.

Note: Recent versions of GCC include the "-masm" option which, when set to "-masm=intel", allow the user to define
inline assembly using the Intel syntax. The equivalent option for GAS is "-msyntax=intel" or using the ".intel_syntax"
directive.

Microsoft's Macro Assembler, MASM, has been in constant production for many many years. Many people claim that
MASM isn't being supported or improved anymore, but Microsoft denies this: MASM is maintained, but is currently in a
bug-fixing mode. No new features are currently being added. However, Microsoft is shipping a 64-bit version of MASM
with new 64-bit compiler suites. MASM is available from Microsoft as part of Visual C++, as a download from MSDN, or
as part of the Microsoft DDK. The latest available version of MASM is version 11.x (ref.: www.masm32.com).

MASM uses the Intel syntax for its instructions, which stands in stark contrast to the AT&T syntax used by the GAS
assembler. Most notably, MASM instructions take their operands in reverse order from GAS. This one fact is perhaps the
biggest stumbling block for people trying to transition between the two assemblers.

MASM also has a very powerful macro engine, which many programmers use to implement a high-level feel in MASM
programs.

http://www.masmforum.com
http://www.movsd.com

JWASM is a 16, 32 and 64-bit assembler for 80x86 platforms, based upon Open Watcom's WASM, and was created by
Japheth.

While syntactically compatible with MASM, it is faster, and its sourcecode is freely available under the Sybase Open
Watcom Public License, and thus it is free for both commerical and non-commercial use. Furthermore, it supports ELF, and
is thus the only cross-platform assembler supporting the popular MASM syntax. JWASM is actively being developed, and
is generally regarded as the unofficial successor to MASM.

http://www.japheth.de/JWasm.html
http://sourceforge.net/projects/jwasm/

The Netwide Assembler, NASM, was started as an open-source initiative to create a free, retargetable assembler for 80x86
platforms. When the NASM project was started, MASM was still being sold by microsoft (MASM is currently free), and
GAS contained very little error checking capability. GAS was, after all, the backend to GCC, and GCC always feeds GAS
syntax-correct code. For this reason, GAS didn't need to interface with the user much, and therefore writing code for GAS
was very tough.

NASM uses a syntax which is "similar to Intel's but less complex".

The NASM users manual is found at http://www.nasm.us/doc/ .

Microsoft Macro Assembler (MASM)

External Links

JWASM

External Links

Netwide Assembler (NASM)
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Features:

Cross platform: Like Gas, this assembler runs on nearly every platform, supposedly even on PowerPC Macs
(though the code generated will only run on an x86 platform)
Open Source
Macro language (code that writes code)

Although it was written in assembly, it runs on several operating systems, including DOS, DexOS, Linux, Windows, and
BSD. Its syntax is similar to TASM's "ideal mode" and NASM's but the macros in this assembler are done differently.

Features:

Written in itself; and therefore its source code is an example of how to write in this assembler
Open source
Clean NASM-like syntax
Very very fast
Has macro language (code that writes code)
Built-in IDE for DOS and Windows
Creates binary, MZ, PE, ELF, COFF - no linker needed

http://flatassembler.net/

YASM is a ground-up rewrite of NASM under the new BSD licence. YASM is designed to understand multiple syntaxes
natively (NASM and GAS, currently). The primary focus of YASM is to produce "libyasm", a reusable library that can
work with code at a low level, and can be easily integrated into other software projects.

http://www.tortall.net/projects/yasm/

 

HLA is an assembler front-end created by Randall Hyde and first popularized in his book "The Art of Assembly".

HLA accepts assembly written using a high-level format, and converts the code into another format (MASM or GAS,
usually). Another assembler (MASM or GAS) will then assemble the instructions into machine code.

 

The proprietary BBC BASIC for Windows supports the development of 32 bit x86 assembler targeting user mode for
Windows using INTEL syntax, but does not currently permit the generation of standalone EXE's (without the inclusion of a
proprietary runtime and environment). Macro assembly is possible by use the BBC BASIC environment, defining macros
by means of BASIC functions wrapped around the relevant code.

More information is in the Assembler section of the manual (http://www.bbcbasic.co.uk/bbcwin/manual/bbcwina.html)

Flat Assembler (FASM)

External Links

YASM Assembler

External Links

HLA

BBC BASIC for WINDOWS (proprietary)
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GAS Syntax

Examples in this article are created using the AT&T assembly syntax used in GNU AS. The main advantage of using this
syntax is its compatibility with the GCC inline assembly syntax. However, this is not the only syntax that is used to
represent x86 operations. For example, NASM uses a different syntax to represent assembly mnemonics, operands and
addressing modes, as do some High-Level Assemblers. The AT&T syntax is the standard on Unix-like systems but some
assemblers use the Intel syntax, or can, like GAS itself, accept both.

GAS instructions generally have the form mnemonic source, destination. For instance, the following mov instruction:

movb $0x05, %al 

This will move the hexadecimal value 5 into the register al.

GAS assembly instructions are generally suffixed with the letters "b", "s", "w", "l", "q" or "t" to determine what size
operand is being manipulated.

b = byte (8 bit).
s = single (32-bit floating point).
w = word (16 bit).
l = long (32 bit integer or 64-bit floating point).
q = quad (64 bit).
t = ten bytes (80-bit floating point).

If the suffix is not specified, and there are no memory operands for the instruction, GAS infers the operand size from the
size of the destination register operand (the final operand).

When referencing a register, the register needs to be prefixed with a "%". Constant numbers need to be prefixed with a "$".

There are up to 4 parameters of an address operand that are presented in the syntax segment:displacement(base
register, index register, scale factor). This is equivalent to segment:[base register +
displacement + index register * scale factor] in Intel syntax.

The base, index and displacement components can be used in any combination, and every component can be omitted;
omitted components are excluded from the calculation above[1][2].

movl    -8(%ebp, %edx, 4), %eax  # Full example: load *(ebp + (edx * 4) - 8) into eax 
movl    -4(%ebp), %eax           # Typical example: load a stack variable into eax 
movl    (%ecx), %edx             # No index: copy the target of a pointer into a register 
leal    8(,%eax,4), %eax         # Arithmetic: multiply eax by 4 and add 8 
leal    (%edx,%eax,2), %eax      # Arithmetic: multiply eax by 2 and add edx 

This section is written as a short introduction to GAS. GAS is part of the GNU Project (http://www.gnu.org/), which gives
it the following nice properties:

It is available on many operating systems.

General Information

Operation Suffixes

Prefixes

Address operand syntax

Introduction

https://en.wikipedia.org/wiki/High_Level_Assembler
http://www.gnu.org/


It interfaces nicely with the other GNU programming tools, including the GNU C compiler (gcc) and GNU
linker (ld).

If you are using a computer with the Linux operating system, chances are you already have GAS installed on your system.
If you are using a computer with the Windows operating system, you can install GAS and other useful programming
utilities by installing Cygwin (http://www.cygwin.com/) or Mingw (http://www.mingw.org/). The remainder of this
introduction assumes you have installed GAS and know how to open a command-line interface and edit files.

Since assembly language corresponds directly to the operations a CPU performs, a carefully written assembly routine may
be able to run much faster than the same routine written in a higher-level language, such as C. On the other hand, assembly
routines typically take more effort to write than the equivalent routine in C. Thus, a typical method for quickly writing a
program that performs well is to first write the program in a high-level language (which is easier to write and debug), then
rewrite selected routines in assembly language (which performs better). A good first step to rewriting a C routine in
assembly language is to use the C compiler to automatically generate the assembly language. Not only does this give you
an assembly file that compiles correctly, but it also ensures that the assembly routine does exactly what you intended it
to.[3]

We will now use the GNU C compiler to generate assembly code, for the purposes of examining the GAS assembly
language syntax.

Here is the classic "Hello, world" program, written in C:

#include <stdio.h> 
 
int main(void) { 
    printf("Hello, world!\n"); 
    return 0; 
} 

Save that in a file called "hello.c", then type at the prompt:

gcc -o hello_c hello.c 

This should compile the C file and create an executable file called "hello_c". If you get an error, make sure that the contents
of "hello.c" are correct.

Now you should be able to type at the prompt:

./hello_c 

and the program should print "Hello, world!" to the console.

Now that we know that "hello.c" is typed in correctly and does what we want, let's generate the equivalent 32-bit x86
assembly language. Type the following at the prompt:

gcc -S -m32 hello.c 

This should create a file called "hello.s" (".s" is the file extension that the GNU system gives to assembly files). On more
recent 64-bit systems, the 32-bit source tree may not be included, which will cause a "bits/predefs.h fatal error"; you may
replace the -m32 gcc directive with an -m64 directive to generate 64-bit assembly instead. To compile the assembly file
into an executable, type:

gcc -o hello_asm -m32 hello.s 

(Note that gcc calls the assembler (as) and the linker (ld) for us.) Now, if you type the following at the prompt:

./hello_asm 

Generating assembly

http://www.cygwin.com/
http://www.mingw.org/
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this program should also print "Hello, world!" to the console. Not surprisingly, it does the same thing as the compiled C
file.

Let's take a look at what is inside "hello.s":

        .file   "hello.c" 
        .def    ___main;        .scl    2;      .type   32;     .endef 
        .text 
LC0: 
        .ascii "Hello, world!\12\0" 
.globl _main 
        .def    _main;  .scl    2;      .type   32;     .endef 
_main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        subl    $8, %esp 
        andl    $-16, %esp 
        movl    $0, %eax 
        movl    %eax, -4(%ebp) 
        movl    -4(%ebp), %eax 
        call    __alloca 
        call    ___main 
        movl    $LC0, (%esp) 
        call    _printf 
        movl    $0, %eax 
        leave 
        ret 
        .def    _printf;        .scl    2;      .type   32;     .endef 

The contents of "hello.s" may vary depending on the version of the GNU tools that are installed; this version was generated
with Cygwin, using gcc version 3.3.1.

The lines beginning with periods, like .file, .def, or .ascii are assembler directives — commands that tell the
assembler how to assemble the file. The lines beginning with some text followed by a colon, like _main:, are labels, or
named locations in the code. The other lines are assembly instructions.

The .file and .def directives are for debugging. We can leave them out:

        .text 
LC0: 
        .ascii "Hello, world!\12\0" 
.globl _main 
_main: 
        pushl   %ebp 
        movl    %esp, %ebp 
        subl    $8, %esp 
        andl    $-16, %esp 
        movl    $0, %eax 
        movl    %eax, -4(%ebp) 
        movl    -4(%ebp), %eax 
        call    __alloca 
        call    ___main 
        movl    $LC0, (%esp) 
        call    _printf 
        movl    $0, %eax 
        leave 
        ret 

         .text 

This line declares the start of a section of code. You can name sections using this directive, which gives you fine-grained
control over where in the executable the resulting machine code goes, which is useful in some cases, like for programming
embedded systems. Using. .text by itself tells the assembler that the following code goes in the default section, which is
sufficient for most purposes.

 LC0: 
         .ascii "Hello, world!\12\0" 

"hello.s" line-by-line
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This code declares a label, then places some raw ASCII text into the program, starting at the label's location. The \12
specifies a line-feed character, while the \0 specifies a null character at the end of the string; C routines mark the end of
strings with null characters, and since we are going to call a C string routine, we need this character here. (NOTE! String in
C is an array of datatype char (char[]) and does not exist in any other form, but because one would understand strings as a
single entity from the majority of programming languages, it is clearer to express it this way.)

 .globl _main 

This line tells the assembler that the label _main is a global label, which allows other parts of the program to see it. In this
case, the linker needs to be able to see the _main label, since the startup code with which the program is linked calls
_main as a subroutine.

 _main: 

This line declares the _main label, marking the place that is called from the startup code.

         pushl   %ebp 
         movl    %esp, %ebp 
         subl    $8, %esp 

These lines save the value of EBP on the stack, then move the value of ESP into EBP, then subtract 8 from ESP. Note that
pushl automatically decremented ESP by the appropriate length. The l on the end of each opcode indicates that we want
to use the version of the opcode that works with long (32-bit) operands; usually the assembler is able to work out the
correct opcode version from the operands, but just to be safe, it's a good idea to include the l, w, b, or other suffix. The
percent signs designate register names, and the dollar sign designates a literal value. This sequence of instructions is typical
at the start of a subroutine to save space on the stack for local variables; EBP is used as the base register to reference the
local variables, and a value is subtracted from ESP to reserve space on the stack (since the Intel stack grows from higher
memory locations to lower ones). In this case, eight bytes have been reserved on the stack. We shall see why this space is
needed later.

         andl    $-16, %esp 

This code ands ESP with 0xFFFFFFF0, aligning the stack with the next lowest 16-byte boundary. An examination of
Mingw's source code reveals that this may be for SIMD instructions appearing in the _main routine, which operate only
on aligned addresses. Since our routine doesn't contain SIMD instructions, this line is unnecessary.

         movl    $0, %eax 
         movl    %eax, -4(%ebp) 
         movl    -4(%ebp), %eax 

This code moves zero into EAX, then moves EAX into the memory location EBP - 4, which is in the temporary space we
reserved on the stack at the beginning of the procedure. Then it moves the memory location EBP - 4 back into EAX;
clearly, this is not optimized code. Note that the parentheses indicate a memory location, while the number in front of the
parentheses indicates an offset from that memory location.

         call    __alloca 
         call    ___main 

These functions are part of the C library setup. Since we are calling functions in the C library, we probably need these. The
exact operations they perform vary depending on the platform and the version of the GNU tools that are installed.

         movl    $LC0, (%esp) 
         call    _printf 

This code (finally!) prints our message. First, it moves the location of the ASCII string to the top of the stack. It seems that
the C compiler has optimized a sequence of popl %eax; pushl $LC0 into a single move to the top of the stack. Then,
it calls the _printf subroutine in the C library to print the message to the console.
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         movl    $0, %eax 

This line stores zero, our return value, in EAX. The C calling convention is to store return values in EAX when exiting a
routine.

         leave 

This line, typically found at the end of subroutines, frees the space saved on the stack by copying EBP into ESP, then
popping the saved value of EBP back to EBP.

         ret 

This line returns control to the calling procedure by popping the saved instruction pointer from the stack.

Note that we only have to call the C library setup routines if we need to call functions in the C library, like printf(). We
could avoid calling these routines if we instead communicate directly with the operating system. The disadvantage of
communicating directly with the operating system is that we lose portability; our code will be locked to a specific operating
system. For instructional purposes, though, let's look at how one might do this under Windows. Here is the C source code,
compilable under Mingw or Cygwin:

#include <windows.h> 
 
int main(void) { 
    LPSTR text = "Hello, world!\n"; 
    DWORD charsWritten; 
    HANDLE hStdout; 
 
    hStdout = GetStdHandle(STD_OUTPUT_HANDLE); 
    WriteFile(hStdout, text, 14, &charsWritten, NULL); 
    return 0; 
} 

Ideally, you'd want check the return codes of "GetStdHandle" and "WriteFile" to make sure they are working correctly, but
this is sufficient for our purposes. Here is what the generated assembly looks like:

         .file   "hello2.c" 
         .def    ___main;        .scl    2;      .type   32;     .endef 
         .text 
 LC0: 
         .ascii "Hello, world!\12\0" 
 .globl _main 
         .def    _main;  .scl    2;      .type   32;     .endef 
 _main: 
         pushl   %ebp 
         movl    %esp, %ebp 
         subl    $4, %esp 
         andl    $-16, %esp 
         movl    $0, %eax 
         movl    %eax, -16(%ebp) 
         movl    -16(%ebp), %eax 
         call    __alloca 
         call    ___main 
         movl    $LC0, -4(%ebp) 
         movl    $-11, (%esp) 
         call    _GetStdHandle@4 
         subl    $4, %esp 
         movl    %eax, -12(%ebp) 
         movl    $0, 16(%esp) 
         leal    -8(%ebp), %eax 
         movl    %eax, 12(%esp) 
         movl    $14, 8(%esp) 
         movl    -4(%ebp), %eax 
         movl    %eax, 4(%esp) 
         movl    -12(%ebp), %eax 
         movl    %eax, (%esp) 
         call    _WriteFile@20 
         subl    $20, %esp 
         movl    $0, %eax 
         leave 
         ret 

Communicating directly with the operating system
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Even though we never use the C standard library, the generated code initializes it for us. Also, there is a lot of unnecessary
stack manipulation. We can simplify:

         .text 
 LC0: 
         .ascii "Hello, world!\12\0" 
 .globl _main 
 _main: 
         pushl   %ebp 
         movl    %esp, %ebp 
         subl    $4, %esp 
         pushl   $-11 
         call    _GetStdHandle@4 
         pushl   $0 
         leal    -4(%ebp), %ebx 
         pushl   %ebx 
         pushl   $14 
         pushl   $LC0 
         pushl   %eax 
         call    _WriteFile@20 
         movl    $0, %eax 
         leave 
         ret 

Analyzing line-by-line:

         pushl   %ebp 
         movl    %esp, %ebp 
         subl    $4, %esp 

We save the old EBP and reserve four bytes on the stack, since the call to WriteFile needs somewhere to store the number
of characters written, which is a 4-byte value.

         pushl   $-11 
         call    _GetStdHandle@4 

We push the constant value STD_OUTPUT_HANDLE (-11) to the stack and call GetStdHandle. The returned handle value
is in EAX.

         pushl   $0 
         leal    -4(%ebp), %ebx 
         pushl   %ebx 
         pushl   $14 
         pushl   $LC0 
         pushl   %eax 
         call    _WriteFile@20 

We push the parameters to WriteFile and call it. Note that the Windows calling convention is to push the parameters from
right-to-left. The load-effective-address (lea) instruction adds -4 to the value of EBP, giving the location we saved on the
stack for the number of characters printed, which we store in EBX and then push onto the stack. Also note that EAX still
holds the return value from the GetStdHandle call, so we just push it directly.

         movl    $0, %eax 
         leave 

Here we set our program's return value and restore the values of EBP and ESP using the leave instruction.

From The GAS manual's AT&T Syntax Bugs section (http://sourceware.org/binutils/docs/as/i386_002dBugs.html#i386_00
2dBugs):

The UnixWare assembler, and probably other AT&T derived ix86 Unix assemblers, generate floating point instructions
with reversed source and destination registers in certain cases. Unfortunately, gcc and possibly many other programs use
this reversed syntax, so we're stuck with it.

For example

Caveats

http://sourceware.org/binutils/docs/as/i386_002dBugs.html#i386_002dBugs


         fsub %st, %st(3) 

results in %st(3) being updated to %st - %st(3) rather than the expected %st(3) - %st. This happens with all
the non-commutative arithmetic floating point operations with two register operands where the source register is %st and
the destination register is %st(i).

Note that even objdump -d -M intel still uses reversed opcodes, so use a different disassembler to check this. See
http://bugs.debian.org/372528 for more info.

You can read more about GAS at the GNU GAS documentation page:

https://sourceware.org/binutils/docs/as/

X86 Disassembly/Calling Conventions

Instruction Meaning

movq %rax, %rbx rbx = rax

movq $123, %rax rax = 123

movq %rsi, -16(%rbp) mem[rbp-16] = rsi

subq $10, %rbp rbp = rbp - 10

cmpl %eax %ebx compare then set flags. If eax == ebx, zero flag is set.

jmp <location> unconditional jump

je <location> jump to <location> if equal flag is set

jg,jge,jl,jle,jne,... >,>=,<,<=,!=,...

1. If segment is not specified, as almost always, it is assumed to be ds, unless base register is esp or
ebp; in this case, the address is assumed to be relative to ss

2. If index register is missing, the pointless scale factor must be omitted as well.
3. This assumes that the compiler has no bugs and, more importantly, that the code you wrote correctly

implements your intent. Note also that compilers can sometimes rearrange the sequence of low-level
operations in order to optimize the code; this preserves the overall semantics of your code but means the
assembly instruction flow may not match up exactly with your algorithm steps.

MASM Syntax
This page will explain x86 Programming using MASM syntax, and will also discuss how to use the macro capabilities of
MASM. Other assemblers, such as NASM and FASM, use syntax different from MASM, similar only in that they all use
Intel syntax.

MASM instructions typically have operands reversed from GAS instructions. for instance, instructions are typically written
as Instruction Destination, Source.

The mov instruction, written as follows:

mov al, 05h 

Additional GAS reading

Quick reference

Notes

Instruction Order

http://bugs.debian.org/372528
https://sourceware.org/binutils/docs/as/
https://en.wikibooks.org/wiki/X86_Disassembly/Calling_Conventions
https://en.wikibooks.org/wiki/X86_Assembly/NASM_Syntax
https://en.wikibooks.org/wiki/X86_Assembly/FASM_Syntax


will move the value 5 into the al register.

MASM does not use instruction suffixes to differentiate between sizes (byte, word, dword, etc).

MASM is known as either the "Macro Assembler", or the "Microsoft Assembler", depending on who you talk to. But no
matter where your answers are coming from, the fact is that MASM has a powerful macro engine, and a number of built-in
macros available immediately.

MASM has a large number of directives that can control certain settings and behaviors. It has more of them compared to
NASM or FASM, for example.

.model small 

.stack 100h 
 
.data 
msg db 'Hello world!$' 
 
.code 
start: 
 mov ah, 09h   ; Display the message 
 lea dx, msg 
 int 21h 
 mov ax, 4C00h  ; Terminate the executable 
 int 21h 
 
end start 

;template for masm510 programming using simplified segment definition 
 title YOUR TITLE HERE 
 page 60,132  
 ;tell the assembler to create a nice .lst file for the convenience of error pruning 
 .model small  
 ;maximum of 64KB for data and code respectively 
 .stack 64 
 .data 
 ;PUT YOUR DATA DEFINITION HERE 
 .code 
 main proc far  
 ;This is the entry point,you can name your procedures by altering "main" according to some rules 
 mov ax,@DATA  
 ;load the data segment address,"@" is the opcode for fetching the offset of "DATA","DATA" could be change according 
to your previous definition for data 
 mov ds,ax  
 ;assign value to ds,"mov" cannot be used for copying data directly to segment registers(cs,ds,ss,es) 
 ;PUT YOUR CODE HERE 
 mov ah,4ch 
 int 21h  
 ;terminate program by a normal way 
 main endp  
 ;end the "main" procedure 
 end main  
 ;end the entire program centering around the "main" procedure 

HLA Syntax

HLA accepts assembly written using a high-level format, and converts the code into another format (MASM or GAS,
usually).

In MASM, for instance, we could write the following code:

Instruction Suffixes

Macros

MASM directives

A Simple Template for MASM510 programming

HLA Syntax



mov EAX, 0x05 

In HLA, this code would become:

mov(0x05, EAX); 

HLA uses the same order-of-operations as GAS syntax, but doesn't require any of the name decoration of GAS. Also, HLA
uses the parenthesis notation to call an instruction. HLA terminates its lines with a semicolon, similar to C or Pascal.

Some people criticize HLA because it "isn't low-level enough". This is false, because HLA can be as low-level as MASM
or GAS, but it also offers the options to use some higher-level abstractions. For instance, HLA can use the following syntax
to pass eax as an argument to the Function1 function:

push(eax); 
call(Function1); 

But HLA also allows the programmer to simplify the process, if they want:

Function1(eax); 

This is called the "parenthesis notation" for calling functions.

HLA also contains a number of different loops (do-while, for, until, etc..) and control structures (if-then-else, switch-case)
that the programmer can use. However, these high-level constructs come with a caveat: Using them may be simple, but they
translate into MASM code instructions. It is usually faster to implement the loops by hand.

FASM Syntax
A Wikibookian has nominated this page for cleanup because: 

page needs general work

You can help make it better (https://en.wikibooks.org/w/index.php?title=X86_Assembly/Print_Version&action=edit). Please review
any relevant discussion.

FASM, also known as Flat Assembler, is an optimizing assembler for the x86 architecture. FASM is written in assembly,
so it can assemble/bootstrap itself. It runs on various operating systems including DOS, Windows, Linux, and Unix. It
supports the x86 and x86-64 instruction sets including SIMD extensions MMX, SSE - SSE4, and AVX.

FASM supports all popular syntaxes used to define hexadecimal numbers:

0xbadf00d ; C-Like Syntax 
$badf00d  ; Pascal-Like Syntax 
0badf00dh  ; h Syntax, requires leading zero to be valid at assembly time 

FASM supports several unique labeling features.

FASM supports labels that use no identifier or label name.

High-Level Constructs

Hexadecimal Numbers

Labels

Anonymous Labels

https://en.wikibooks.org/wiki/File:Emblem-important.svg
https://en.wikibooks.org/w/index.php?title=X86_Assembly/Print_Version&action=edit
https://en.wikibooks.org/wiki/Talk:X86_Assembly/Print_Version


@@: represents an anonymous label. Any number of anonymous labels can be defined.
@b refers to the closest @@ that can be found when looking backwards in source. @r and @b are
equivalent.
@f refers to the closest @@ that can be found when looking forward in source.

@@: 
    inc eax 
    push eax 
    jmp @b     ; This will result in a stack fault sooner or later 
    jmp @f     ; This instruction will never be hit 
@@:            ; if jmp @f was ever hit, the instruction pointer would be set to this anonymous label 
    invoke ExitProcess, 0 ; Winasm only 

Local labels, which begin with a . (period). You can reference a local label in the context of its global label parent.

entry globallabel 
 
globallabel: 
    .locallabelone: 
        jmp globallabel2.locallabelone 
    .locallabeltwo: 
  
globallabel2: 
    .locallabelone: 
    .locallabeltwo: 
        jmp globallabel.locallabelone ; infinite loop 

FASM supports several unique operators to simplify assembly code.

$ describes the current location in an addressing space. It is used to determine the size of a block of code or data. The
MASM equivalent of the $ is equivalent is the SIZEOF operator.

mystring db "This is my string", 0 
mystring.length = $ - mystring 

# is the symbol concatenation operator, used for combining multiple symbols into one. It can only be used inside of the
body of a macro like rept or a custom/user-defined macro, because it will replace the name of the macro argument supplied
with its value.

macro contrived value { 
    some#value db 22 
} 
; ... 
contrived 2 
 
; assembles to... 
some2 db 22 

` is used to obtain the name of a symbol passed to a macro, converting it to a string.

macro print_contrived value { 
    formatter db "%s\n" 
    invoke printf, formatter, `value 
} 
; ... 
print_contrived SOMEVALUE 
 

Local Labels

Operators

The $ Operator

The # Operator

The ` Operator



; assembles to... 
formatter db "%s\n" 
invoke printf, formatter, "SOMEVALUE" 

FASM has several useful built in macros to simplify writing assembly code.

The rept directive is used to compact repetitive assembly instructions into a block. The directive begins with the word rept,
then a number or variable specifying the number of times the assembly instructions inside of the curly braces proceeding
the instruction should be repeated. The counter variable can be aliased to be used as a symbol, or as part of an instruction
within the rept block.

rept 2 { 
    db "Hello World!", 0Ah, 0 
} 
 
; assembles to... 
db "Hello World!", 0Ah, 0 
db "Hello World!", 0Ah, 0 
 
; and... 
rept 2 helloNumber { 
    hello#helloNumber db "Hello World!", 0Ah, 0 ; use the symbol concatenation operator '#' to create unique labels 
hello1 and hello2 
} 
 
; assembles to... 
hello1 db "Hello World!", 0Ah, 0 
hello2 db "Hello World!", 0Ah, 0 

The struc directive allows assembly of data into a format similar to that of a C structure with members. The definition of a
struc makes use of local labels to define member values.

struc 3dpoint x, y, z 
{ 
    .x db x, 
    .y db y, 
    .z db z 
} 
 
some 3dpoint 1, 2, 3 
 
; assembles to... 
some: 
    .x db 1 
    .y db 2 
    .z db 3 
 
; access a member through some.x, some.y, or some.z for x, y, and z respectively 

FASM supports defining custom macros as a way of assembling multiple instructions or conditional assembly as one larger
instruction. They require a name and can have an optional list of arguments, separated by commas.

macro name arg1, arg2, ... { 
   ; <macro body> 
} 

Macros can support a variable number of arguments through the square bracket syntax.

macro name arg1, arg2, [varargs] { 
   ; <macro body> 

Built In Macros

Repetition

Structures

Custom Macros

Variable Arguments



} 

The FASM macro syntax can require operands in a macro definition using the * operator after each operand.

; all operands required, will not assemble without 
macro mov op1*, op2*, op3* 
{ 
    mov op1, op2 
    mov op2, op3 
} 

The FASM macro syntax allows for the overloading of the syntax of an instruction, or creating a new instruction. Below,
the mov instruction has been overloaded to support a third operand. In the case that none is supplied, the regular move
instruction is assembled. Otherwise, the data in op2 is moved to op1 and op2 is replaced by op3.

; not all operands required, though if op1 or op2 are not supplied 
; assembly should fail 
; could also be defined as 'macro mov op1*, op2*, op3' to force requirement of the first two arguments 
macro mov op1, op2, op3 
{ 
    if op3 eq 
        mov op1, op2 
    else 
        mov op1, op2 
        mov op2, op3 
    end if 
} 

This is a complete example of a Win32 assembly program that prints 'Hello World!' to the console and then waits for the
user to press any key before exiting the application.

format PE console                            ; Win32 portable executable console format 
entry _start                                 ; _start is the program's entry point 
 
include 'INCLUDE/WIN32A.INC'                          
 
section '.data' data readable writable       ; data definitions 
 
hello db "Hello World!", 0 
stringformat db "%s", 0ah, 0 
 
section '.code' code readable executable     ; code 
 
_start: 
        invoke printf, stringformat, hello   ; call printf, defined in msvcrt.dll 
        invoke getchar                       ; wait for any key 
        invoke ExitProcess, 0                ; exit the process 
 
section '.imports' import data readable      ; data imports 
 
library kernel, 'kernel32.dll',\             ; link to kernel32.dll, msvcrt.dll 
        msvcrt, 'msvcrt.dll' 
 
import kernel, \                             ; import ExitProcess from kernel32.dll 
       ExitProcess, 'ExitProcess' 
 
import msvcrt, \                             ; import printf and getchar from msvcrt.dll 
       printf, 'printf',\ 
       getchar, '_fgetchar' 

FASM website (http://flatassembler.net/)
FASM official manual (http://flatassembler.net/docs.php?article=manual)
TAJGA FASM tutorial (http://bos.asmhackers.net/docs/FASM%20tutorial/)
TAJGA FASM preprocessor tutorial (http://bos.asmhackers.net/docs/FASM%20tutorial/preproc.html)

Required Operands

Operator Overloading

Hello World

External Links
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NASM Syntax
The Netwide Assembler is an x86 and x86-64 assembler that uses syntax similar to Intel. It supports a variety of object file
formats, including:

1. ELF32/64
2. Linux a.out
3. NetBSD/FreeBSD a.out
4. MS-DOS 16-bit/32-bit object files
5. Win32/64 object files
6. COFF
7. Mach-O 32/64
8. rdf
9. binary

NASM runs on both Unix/Linux and Windows/DOS.

The Netwide Assembler (NASM) uses a syntax "designed to be simple and easy to understand, similar to Intel's but less
complex". This means that the operand order is dest then src, as opposed to the AT&T style used by the GNU Assembler.
For example,

mov ax, 9 

loads the number 9 into register ax.

For those using gdb with nasm, you can set gdb to use Intel-style disassembly by issuing the command:

set disassembly-flavor intel 

A single semi-colon is used for comments, and functions the same as double slash in C++: the compiler ignores from the
semicolon to the next newline.

NASM has powerful macro functions, similar to C's preprocessor. For example,

%define newline 0xA 
%define func(a, b) ((a) * (b) + 2) 
 
func (1, 22) ; expands to ((1) * (22) + 2) 
 
%macro print 1 ; macro with one argument 
  push dword %1 ; %1 means first argument 
  call printf 
  add  esp, 4 
%endmacro 
 
print mystring ; will call printf 

To pass the kernel a simple input command on Linux, you would pass values to the following registers and then send the
kernel an interrupt signal. To read in a single character from standard input (such as from a user at their keyboard), do the
following:

NASM Syntax

Comments

Macros

Example I/O (Linux and BSD)



; read a byte from stdin 
mov eax, 3   ; 3 is recognized by the system as meaning "read" 
mov ebx, 0   ; read from standard input 
mov ecx, variable        ; address to pass to 
mov edx, 1   ; input length (one byte) 
int 0x80                 ; call the kernel 

After the int 0x80, eax will contain the number of bytes read. If this number is < 0, there was a read error of some sort.

Outputting follows a similar convention:

; print a byte to stdout 
mov eax, 4           ; the system interprets 4 as "write" 
mov ebx, 1           ; standard output (print to terminal) 
mov ecx, variable    ; pointer to the value being passed 
mov edx, 1           ; length of output (in bytes) 
int 0x80             ; call the kernel 

BSD systems (MacOS X included) use similar system calls, but convention to execute them is different. While on Linux
you pass system call arguments in different registers, on BSD systems they are pushed onto stack (except the system call
number, which is put into eax, the same way as in Linux). BSD version of the code above:

; read a byte from stdin 
mov eax, 3  ; sys_read system call 
push dword 1  ; input length 
push dword variable ; address to pass to 
push dword 0  ; read from standard input 
push eax 
int 0x80  ; call the kernel 
add esp, 16  ; move back the stack pointer 
 
; write a byte to stdout 
mov eax, 4  ; sys_write system call 
push dword 1  ; output length 
push dword variable ; memory address 
push dword 1  ; write to standard output 
push eax 
int 0x80  ; call the kernel 
add esp, 16  ; move back the stack pointer 
 
; quit the program 
mov eax, 1  ; sys_exit system call 
push dword 0  ; program return value 
push eax 
int 0x80  ; call the kernel 

Below we have a simple Hello world example, it lays out the basic structure of a nasm program:

global _start 
 
section .data 
        ; Align to the nearest 2 byte boundary, must be a power of two 
        align 2 
        ; String, which is just a collection of bytes, 0xA is newline 
        str:     db 'Hello, world!',0xA 
        strLen:  equ $-str 
 
section .bss 
 
section .text 
        _start: 
 
; 
;       op      dst,  src 
; 
                                ; 
                                ; Call write(2) syscall: 
                                ;       ssize_t write(int fd, const void *buf, size_t count) 
                                ; 
        mov     edx, strLen     ; Arg three: the length of the string 
        mov     ecx, str        ; Arg two: the address of the string 
        mov     ebx, 1          ; Arg one: file descriptor, in this case stdout 
        mov     eax, 4          ; Syscall number, in this case the write(2) syscall:  
        int     0x80            ; Interrupt 0x80         
 
                                ; 
                                ; Call exit(3) syscall 
                                ;       void exit(int status) 
                                ; 
        mov     ebx, 0          ; Arg one: the status 

Hello World (Linux)



        mov     eax, 1          ; Syscall number: 
        int     0x80 

In order to assemble, link and run the program we need to do the following:

$ nasm -f elf32 -g helloWorld.asm 
$ ld -g helloWorld.o 
$ ./a.out 

In this example we are going to rewrite the hello world example using Win32 system calls. There are several major
differences:

1. The intermediate file will be a Microsoft Win32 (i386) object file
2. We will avoid using interrupts since they may not be portable and therefore we need to bring in several calls

from kernel32 DLL

 

global _start 
 
extern _GetStdHandle@4 
extern _WriteConsoleA@20 
extern _ExitProcess@4 
 
section .data 
        str:     db 'hello, world',0x0D,0x0A 
        strLen:  equ $-str 
 
section .bss 
        numCharsWritten:        resd 1 
 
section .text 
        _start: 
 
        ; 
        ; HANDLE WINAPI GetStdHandle( _In_  DWORD nStdHandle ) ; 
        ; 
        push    dword -11       ; Arg1: request handle for standard output 
        call    _GetStdHandle@4 ; Result: in eax 
 
        ; 
        ; BOOL WINAPI WriteConsole( 
        ;       _In_        HANDLE hConsoleOutput, 
        ;       _In_        const VOID *lpBuffer, 
        ;       _In_        DWORD nNumberOfCharsToWrite, 
        ;       _Out_       LPDWORD lpNumberOfCharsWritten, 
        ;       _Reserved_  LPVOID lpReserved ) ; 
        ; 
        push    dword 0         ; Arg5: Unused so just use zero 
        push    numCharsWritten ; Arg4: push pointer to numCharsWritten 
        push    dword strLen    ; Arg3: push length of output string 
        push    str             ; Arg2: push pointer to output string 
        push    eax             ; Arg1: push handle returned from _GetStdHandle 
        call    _WriteConsoleA@20 
 
 
        ; 
        ; VOID WINAPI ExitProcess( _In_  UINT uExitCode ) ; 
        ; 
        push    dword 0         ; Arg1: push exit code 
        call    _ExitProcess@4 

In order to assemble, link and run the program we need to do the following. This example was run under cygwin, in a
Windows command prompt the link step would be different. In this example we use the -e command line option when
invoking ld to specify the entry point for program execution. Otherwise we would have to use _WinMain@16 as the
entry point rather than _start. One last note, WriteConsole() does not behave well within a cygwin console, so in
order to see output the final exe should be run within a Windows command prompt:

$ nasm -f win32 -g helloWorldWin32.asm 
$ ld -e _start helloWorldwin32.obj -lkernel32 -o helloWorldWin32.exe 

Hello World (Using only Win32 system calls)

Hello World (Using C libraries and Linking with gcc)



In this example we will rewrite Hello World to use printf(3) from the C library and link using gcc. This has the
advantage that going from Linux to Windows requires minimal source code changes and a slightly different assemble and
link steps. In the Windows world this has the additional benefit that the linking step will be the same in the Windows
command prompt and cygwin. There are several major changes:

1. The "hello, world" string now becomes the format string for printf(3) and therefore needs to be null
terminated. This also means we do not need to explicitly specify its length anymore.

2. gcc expects the entry point for execution to be main
3. Microsoft will prefix functions using the cdecl calling convention with a underscore. So main and printf

will become _main and _printf respectively in the Windows development environment.

 

global main 
 
extern printf 
 
section .data 
        fmtStr:  db 'hello, world',0xA,0 
 
section .text 
        main: 
 
        sub     esp, 4          ; Allocate space on the stack for one 4 byte parameter 
 
        lea     eax, [fmtStr] 
        mov     [esp], eax      ; Arg1: pointer to format string 
        call    printf         ; Call printf(3): 
                                ;       int printf(const char *format, ...); 
 
        add     esp, 4          ; Pop stack once 
 
        ret 

In order to assemble, link and run the program we need to do the following.

$ nasm -felf32 helloWorldgcc.asm 
$ gcc helloWorldgcc.o -o helloWorldgcc 

The Windows version with prefixed underscores:

global _main 
 
extern _printf                ; Uncomment under Windows 
 
section .data 
        fmtStr:  db 'hello, world',0xA,0 
 
section .text 
        _main: 
 
        sub     esp, 4          ; Allocate space on the stack for one 4 byte parameter 
 
        lea     eax, [fmtStr] 
        mov     [esp], eax      ; Arg1: pointer to format string 
        call    _printf         ; Call printf(3): 
                                ;       int printf(const char *format, ...); 
 
        add     esp, 4          ; Pop stack once 
 
        ret 

In order to assemble, link and run the program we need to do the following.

$ nasm -fwin32 helloWorldgcc.asm 
$ gcc helloWorldgcc.o -o helloWorldgcc.exe 

Floating Point
While integers are sufficient for some applications, it is often necessary to use the floating point coprocessor to manipulate
numbers with fractional parts.



The original x86 family members had a separate math coprocessor that handled floating point arithmetic. The original
coprocessor was the 8087, and all FPUs since have been dubbed "x87" chips. Later variants integrated the floating point
unit (FPU) into the microprocessor itself. Having the capability to manage floating point numbers means a few things:

1. The microprocessor must have space to store floating point numbers
2. The microprocessor must have instructions to manipulate floating point numbers

The FPU, even when it is integrated into an x86 chip, is still called the "x87" section. For instance, literature on the subject
will frequently call the FPU Register Stack the "x87 Stack", and the FPU operations will frequently be called the "x87
instruction set".

The FPU has 8 registers, st0 to st7, formed into a stack. Numbers are pushed onto the stack from memory, and are popped
off the stack back to memory. FPU instructions generally will pop the first two items off the stack, act on them, and push
the answer back on to the top of the stack.

Floating point numbers may generally be either 32 bits long (C "float" type), or 64 bits long (C "double" type). However, in
order to reduce round-off errors, the FPU stack registers are all 80 bits wide.

Most calling conventions return floating point values in the st0 register.

The following program (using NASM syntax) calculates the square root of 123.45.

global _start 
 
section .data 
    val: dq 123.45  ;declare quad word (double precision) 
 
section .bss 
    res: resq 1     ;reserve 1 quad word for result 
 
section .text 
    _start: 
 
    fld qword [val] ;load value into st0 
    fsqrt           ;compute square root of st0 and store in st0 
    fstp qword [res] ;store st0 in [res], and pop it off the x87 stack (leaving the x87 register stack empty again) 
 
    ;end program 

Essentially, programs that use the FPU load values onto the stack with FLD and its variants, perform operations on these
values, then store them into memory with one of the forms of FST, most commonly FSTP when you're done with x87, to
clean up the x87 stack as required by most calling conventions. Because the x87 stack can only be accessed by FPU
instructions ‒ you cannot write mov eax, st0 ‒ it is necessary to store values to memory if you want to print them, for
example.

A more complex example that evaluates the Law of Cosines:

;; c^2 = a^2 + b^2 - cos(C)*2*a*b 
;; C is stored in ang 
 
global _start 
 
section .data 
    a: dq 4.56   ;length of side a 
    b: dq 7.89   ;length of side b 
    ang: dq 1.5  ;opposite angle to side c (around 85.94 degrees) 
 
section .bss 
    c: resq 1    ;the result ‒ length of side c 
 
section .text 
    _start: 
 
    fld    qword [a]   ;load a into st0 
    fmul   st0, st0    ;st0 = a * a = a^2 

x87 Coprocessor

FPU Register Stack

Examples
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    fld    qword [b]   ;load b into st0   (pushing the a^2 result up to st1) 
    fmul   st0, st0    ;st0 = b * b = b^2,   st1 = a^2 
 
    faddp              ;add and pop, leaving st0 = old_st0 + old_st1 = a^2 + b^2.  (st1 is freed / empty now) 
 
    fld    qword [ang] ;load angle into st0.  (st1 = a^2 + b^2 which we'll leave alone until later) 
    fcos               ;st0 = cos(ang) 
 
    fmul   qword [a]   ;st0 = cos(ang) * a 
    fmul   qword [b]   ;st0 = cos(ang) * a * b 
    fadd   st0, st0    ;st0 = cos(ang) * a * b + cos(ang) * a * b = 2(cos(ang) * a * b) 
 
    fsubp  st1, st0    ;st1 = st1 - st0 = (a^2 + b^2) - (2 * a * b * cos(ang)) 
                       ;and pop st0 
 
    fsqrt              ;take square root of st0 = c 
 
    fstp   qword [c]   ;store st0 in c and pop, leaving the x87 stack empty again ‒ and we're done! 
 
    ; don't forget to make an exit system call for your OS, 
    ; or execution will fall off the end and decode whatever garbage bytes are next. 
    mov   eax, 1                ; __NR_exit 
    xor   ebx, ebx 
    int   0x80                  ; i386 Linux sys_exit(0) 
    ;end program 

You may notice that some of the instructions below differ from another in name by just one letter: a P appended to the end.
This suffix signifies that in addition to performing the normal operation, they also Pop the x87 stack after execution is
complete.

F2XM1, FABS, FADD, FADDP, FBLD, FBSTP, FCHS, FCLEX, FCOM, FCOMP, FCOMPP, FDECSTP, FDISI, FDIV,
FDIVP, FDIVR, FDIVRP, FENI, FFREE, FIADD, FICOM, FICOMP, FIDIV, FIDIVR, FILD, FIMUL, FINCSTP, FINIT,
FIST, FISTP, FISUB, FISUBR, FLD, FLD1, FLDCW, FLDENV, FLDENVW, FLDL2E, FLDL2T, FLDLG2, FLDLN2,
FLDPI, FLDZ, FMUL, FMULP, FNCLEX, FNDISI, FNENI, FNINIT, FNOP, FNSAVE, FNSAVEW, FNSTCW,
FNSTENV, FNSTENVW, FNSTSW, FPATAN, FPREM, FPTAN, FRNDINT, FRSTOR, FRSTORW, FSAVE, FSAVEW,
FSCALE, FSQRT, FST, FSTCW, FSTENV, FSTENVW, FSTP, FSTSW, FSUB, FSUBP, FSUBR, FSUBRP, FTST, FWAIT,
FXAM, FXCH, FXTRACT, FYL2X, FYL2XP1

FSETPM

FCOS, FLDENVD, FNSAVED, FNSTENVD, FPREM1, FRSTORD, FSAVED, FSIN, FSINCOS, FSTENVD, FUCOM,
FUCOMP, FUCOMPP

FCMOVB, FCMOVBE, FCMOVE, FCMOVNB, FCMOVNBE, FCMOVNE, FCMOVNU, FCMOVU, FCOMI, FCOMIP,
FUCOMI, FUCOMIP, FXRSTOR, FXSAVE

FXRSTOR, FXSAVE

These are also supported on later Pentium IIs which do not contain SSE support

Floating-Point Instruction Set

Original 8087 instructions

Added in specific processors

Added with 80287

Added with 80387

Added with Pentium Pro

Added with SSE

Added with SSE3

https://en.wikipedia.org/wiki/Pentium_FDIV_bug


FISTTP (x87 to integer conversion with truncation regardless of status word)

FFREEP performs FFREE ST(i) and pop stack

X86 Disassembly/Floating Point Numbers
Floating Point

MMX
MMX is a supplemental instruction set introduced by Intel in 1996. Most of the new instructions are "single instruction,
multiple data" (SIMD), meaning that single instructions work with multiple pieces of data in parallel.

MMX has a few problems, though: instructions run slightly slower than the regular arithmetic instructions, the Floating
Point Unit (FPU) can't be used when the MMX registers are in use, and MMX registers use saturation arithmetic.

In an 8-bit grayscale picture, 255 is the value for pure white, and 0 is the value for pure black. In a regular register (AX,
BX, CX ...) if we add one to white, we get black! This is because the regular registers "roll-over" to the next value. MMX
registers get around this by a technique called "Saturation Arithmetic". In saturation arithmetic, the value of the register
never rolls over to 0 again. This means that in the MMX world, we have the following equations:

255 + 100 = 255 
200 + 100 = 255 
0 - 100 = 0; 
99 - 100 = 0; 

This may seem counter-intuitive at first to people who are used to their registers rolling over, but it makes sense in some
situations: if we try to make white brighter, it shouldn't become black.

The MMX registers are 64 bits wide, but can be broken down as follows:

2 32 bit values 
4 16 bit values 
8 8 bit values 

The MMX registers cannot easily be used for 64 bit arithmetic. Let's say that we have 4 bytes loaded in an MMX register:
10, 25, 128, 255. We have them arranged as such:

MM0: | 10 | 25 | 128 | 255 | 

And we do the following pseudo code operation:

MM0 + 10 

We would get the following result:

MM0: | 10+10 | 25+10 | 128+10 | 255+10 | = | 20 | 35 | 138 | 255 | 

Remember that our arithmetic "saturates" in the last box, so the value doesn't go over 255.

Undocumented instructions

Further Reading

Saturation Arithmetic

Single Instruction Multiple Data (SIMD) Instructions

https://en.wikibooks.org/wiki/X86_Disassembly/Floating_Point_Numbers
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Using MMX, we are essentially performing 4 additions in the time it takes to perform 1 addition using the regular registers,
using 4 times fewer instructions.

There are 8 64-bit MMX registers. To avoid having to add new registers, they were made to overlap with the FPU stack
register. This means that the MMX instructions and the FPU instructions cannot be used simultaneously. MMX
registers are addressed directly, and do not need to be accessed by pushing and popping in the same way as the FPU
registers.

MM7 MM6 MM5 MM4 MM3 MM2 MM1 MM0 

These registers correspond to the same numbered FPU registers on the FPU stack.

Usually when you initiate an assembly block in your code that contains MMX instructions, the CPU automatically will
disallow floating point instructions. To re-allow FPU operations you must end all MMX code with emms.

The following is a program for GNU AS and GCC which copies 8 bytes from one variable to another and prints the result.

Assembler portion

.globl copy_memory8 

.type  copy_memory8, @function 
copy_memory8: 
    pushl %ebp 
    mov  %esp, %ebp 
    mov 8(%ebp), %eax 
    movq (%eax), %mm0 
    mov 12(%ebp), %eax 
    movq %mm0, (%eax) 
    popl %ebp 
    emms 
    ret 
.size copy_memory8,.-copy_memory8 

C portion

#include <stdio.h> 
 
void copy_memory8(void * a, void * b); 
 
int main () { 
 long long b = 0x0fffffff00000000; 
 long long c = 0x00000000ffffffff; 
 printf("%lld == %lld\n", b, c); 
 copy_memory8(&b, &c); 
 printf("%lld == %lld\n", b, c); 
 return 0; 
} 

Several suffixes are used to indicate what data size the instruction operates on:

Byte (8 bits)
Word (16 bits)
Double word (32 bits)
Quad word (64 bits)

The signedness of the operation is also signified by the suffix: US for unsigned and S for signed.

For example, PSUBUSB subtracts unsigned bytes, while PSUBSD subtracts signed double words.

MMX defined over 40 new instructions, listed below.

MMX Registers

MMX Instruction Set



EMMS, MOVD, MOVQ, PACKSSDW, PACKSSWB, PACKUSWB, PADDB, PADDD, PADDSB, PADDSW, PADDUSB,
PADDUSW, PADDW, PAND, PANDN, PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTD, PCMPGTW,
PMADDWD, PMULHW, PMULLW, POR, PSLLD, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLQ, PSRLW,
PSUBB, PSUBD, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PSUBW, PUNPCKHBW, PUNPCKHDQ,
PUNPCKHWD, PUNPCKLBW, PUNPCKLDQ, PUNPCKLWD, PXOR

SSE
SSE stands for Streaming SIMD Extensions. It is essentially the floating-point equivalent of the MMX instructions. The
SSE registers are 128 bits, and can be used to perform operations on a variety of data sizes and types. Unlike MMX, the
SSE registers do not overlap with the floating point stack.

SSE, introduced by Intel in 1999 with the Pentium III, creates eight new 128-bit registers:

XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 

Originally, an SSE register could only be used as four 32-bit single precision floating point numbers (the equivalent of a
float in C). SSE2 expanded the capabilities of the XMM registers, so they can now be used as:

2 64-bit floating points (double precision)
2 64-bit integers
4 32-bit floating points (single-precision)
4 32-bit integers
8 16-bit integers
16 8-bit characters (bytes)

The following program (using NASM syntax) performs data movements using SIMD instructions.

; 
; nasm -felf32 -g sseMove.asm 
; ld -g sseMove.o 
; 
global _start 
 
section .data 
 align 16 
 v1: dd 1.1, 2.2, 3.3, 4.4 ; Four Single precision floats 32 bits each 
 v1dp: dq 1.1, 2.2  ; Two Double precision floats 64 bits each 
 v2: dd 5.5, 6.6, 7.7, 8.8 
 v2s1: dd 5.5, 6.6, 7.7, -8.8 
 v2s2: dd 5.5, 6.6, -7.7, -8.8 
 v2s3: dd 5.5, -6.6, -7.7, -8.8 
 v2s4: dd -5.5, -6.6, -7.7, -8.8 
 num1: dd 1.2 
 v3: dd 1.2, 2.3, 4.5, 6.7 ; No longer 16 byte aligned 
 v3dp: dq 1.2, 2.3  ; No longer 16 byte aligned 
 
section .bss 
 mask1: resd 1 
 mask2: resd 1 
 mask3: resd 1 
 mask4: resd 1 
 
section .text 
 _start: 
 
; 
; op dst,  src 
; 
    ; 
    ; SSE 
    ; 
    ; Using movaps since vectors are 16 byte aligned 
 movaps xmm0, [v1] ; Move four 32-bit(single precision) floats to xmm0  
 movaps xmm1, [v2] 
 movups xmm2, [v3] ; Need to use movups since v3 is not 16 byte aligned 
 ;movaps xmm3, [v3] ; This would seg fault if uncommented  

Registers

Data movement examples
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 movss xmm3, [num1] ; Move 32-bit float num1 to the least significant element of xmm3 
 movss xmm3, [v3] ; Move first 32-bit float of v3 to the least significant element of xmm3 
 movlps xmm4, [v3] ; Move 64-bits(two single precision floats) from memory to the lower 64-bit elements of xmm4 
 movhps xmm4, [v2] ; Move 64-bits(two single precision floats) from memory to the higher 64-bit elements of 
xmm4 
 
    ; Source and destination for movhlps and movlhps must be xmm registers 
 movhlps xmm5, xmm4 ; Transfers the higher 64-bits of the source xmm4 to the lower 64-bits of the destination 
xmm5 
 movlhps xmm5, xmm4 ; Transfers the lower 64-bits of the source xmm4 to the higher 64-bits of the destination 
xmm5 
 
 
 movaps xmm6, [v2s1] 
 movmskps eax, xmm6 ; Extract the sign bits from four 32-bits floats in xmm6 and create 4 bit mask in eax  
 mov [mask1], eax ; Should be 8 
 movaps xmm6, [v2s2] 
 movmskps eax, xmm6 ; Extract the sign bits from four 32-bits floats in xmm6 and create 4 bit mask in eax 
 mov [mask2], eax ; Should be 12 
 movaps xmm6, [v2s3] 
 movmskps eax, xmm6 ; Extract the sign bits from four 32-bits floats in xmm6 and create 4 bit mask in eax 
 mov [mask3], eax ; Should be 14 
 movaps xmm6, [v2s4] 
 movmskps eax, xmm6 ; Extract the sign bits from four 32-bits floats in xmm6 and create 4 bit mask in eax 
 mov [mask4], eax ; Should be 15 
 
 
    ; 
    ; SSE2 
    ; 
 movapd xmm6, [v1dp] ; Move two 64-bit(double precision) floats to xmm6, using movapd since vector is 16 byte 
aligned  
    ; Next two instruction should have equivalent results to movapd xmm6, [vldp] 
 movhpd xmm6, [v1dp+8] ; Move a 64-bit(double precision) float into the higher 64-bit elements of xmm6  
 movlpd xmm6, [v1dp] ; Move a 64-bit(double precision) float into the lower 64-bit elements of xmm6 
 movupd xmm6, [v3dp] ; Move two 64-bit floats to xmm6, using movupd since vector is not 16 byte aligned 

The following program (using NASM syntax) performs a few SIMD operations on some numbers.

global _start 
 
section .data 
    v1: dd 1.1, 2.2, 3.3, 4.4    ;first set of 4 numbers 
    v2: dd 5.5, 6.6, 7.7, 8.8    ;second set 
     
section .bss 
    v3: resd 4    ;result 
     
section .text 
    _start: 
     
    movups xmm0, [v1]   ;load v1 into xmm0 
    movups xmm1, [v2]   ;load v2 into xmm1 
     
    addps xmm0, xmm1    ;add the 4 numbers in xmm1 (from v2) to the 4 numbers in xmm0 (from v1), store in xmm0. for 
the first float the result will be 5.5+1.1=6.6 
    mulps xmm0, xmm1    ;multiply the four numbers in xmm1 (from v2, unchanged) with the results from the previous 
calculation (in xmm0), store in xmm0. for the first float the result will be 5.5*6.6=36.3 
    subps xmm0, xmm1    ;subtract the four numbers in v2 (in xmm1, still unchanged) from result from previous 
calculation (in xmm1). for the first float, the result will be 36.3-5.5=30.8 
     
    movups [v3], xmm0   ;store v1 in v3 
     
    ;end program 
    ret 

The result values should be:

30.800    51.480    77.000    107.360 

Using the GNU toolchain, you can debug and single-step like this:

 % nasm -felf32 -g ssedemo.asm 
 % ld -g ssedemo.o             
 % gdb -q ./a.out                 
Reading symbols from a.out...done. 
(gdb) break _start 
Breakpoint 1 at 0x8048080 
(gdb) r 
Starting program: a.out  
 
Breakpoint 1, 0x08048080 in _start () 
(gdb) disass 
Dump of assembler code for function _start: 

Arithmetic example using packed singles
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=> 0x08048080 <+0>: movups 0x80490a0,%xmm0 
   0x08048087 <+7>: movups 0x80490b0,%xmm1 
   0x0804808e <+14>: addps  %xmm1,%xmm0 
   0x08048091 <+17>: mulps  %xmm1,%xmm0 
   0x08048094 <+20>: subps  %xmm1,%xmm0 
   0x08048097 <+23>: movups %xmm0,0x80490c0 
End of assembler dump. 
(gdb) stepi 
0x08048087 in _start () 
(gdb)  
0x0804808e in _start () 
(gdb) p $xmm0 
$1 = {v4_float = {1.10000002, 2.20000005, 3.29999995, 4.4000001}, v2_double = {3.6000008549541236, 
921.60022034645078}, v16_int8 = {-51, -52, -116, 63,  
    -51, -52, 12, 64, 51, 51, 83, 64, -51, -52, -116, 64}, v8_int16 = {-13107, 16268, -13107, 16396, 13107, 16467, 
-13107, 16524}, v4_int32 = {1066192077,  
    1074580685, 1079194419, 1082969293}, v2_int64 = {4615288900054469837, 4651317697086436147}, uint128 = 
0x408ccccd40533333400ccccd3f8ccccd} 
(gdb) x/4f &v1 
0x80490a0 <v1>: 1.10000002 2.20000005 3.29999995 4.4000001 
(gdb) stepi 
0x08048091 in _start () 
(gdb) p $xmm0 
$2 = {v4_float = {6.5999999, 8.80000019, 11, 13.2000008}, v2_double = {235929.65665283203, 5033169.0185546875}, 
v16_int8 = {51, 51, -45, 64, -51, -52, 12,  
    65, 0, 0, 48, 65, 52, 51, 83, 65}, v8_int16 = {13107, 16595, -13107, 16652, 0, 16688, 13108, 16723}, v4_int32 = 
{1087583027, 1091357901, 1093664768,  
    1095971636}, v2_int64 = {4687346494113788723, 4707162335057281024}, uint128 = 
0x4153333441300000410ccccd40d33333} 
(gdb) 

break
In this case, sets a breakpoint at a given label

stepi
Steps one instruction forward in the program

p
short for print, prints a given register or variable. Registers are prefixed by $ in GDB.

x
short for examine, examines a given memory address. The "/4f" means "4 floats" (floats in GDB are 32-
bits). You can use c for chars, x for hexadecimal and any other number instead of 4 of course. The "&"
takes the address of v1, as in C.

shufps IMM8, arg1, arg2 GAS Syntax

shufps arg2, arg1, IMM8 Intel Syntax

shufps can be used to shuffle packed single-precision floats. The instruction takes three parameters, arg1 an xmm
register, arg2 an xmm or a 128-bit memory location and IMM8 an 8-bit immediate control byte. shufps will take two
elements each from arg1 and arg2, copying the elements to arg2. The lower two elements will come from arg1 and
the higher two elements from arg2.

IMM8 control byte is split into four group of bit fields that control the output into arg2 as follows:

1. IMM8[1:0] specifies which element of arg1 ends up in the least significant element of arg2:

IMM8[1:0] Description

00b Copy to the least significant element

01b Copy to the second element

10b Copy to the third element

11b Copy to the most significant element

2. IMM8[3:2] specifies which element of arg1 ends up in the second element of arg2:

Debugger commands explained

Shuffling example using shufps

IMM8 control byte description
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IMM8[3:2] Description

00b Copy to the least significant element

01b Copy to the second element

10b Copy to the third element

11b Copy to the most significant element

3. IMM8[5:4] specifies which element of arg2 ends up in the third element of arg2:

IMM8[5:4] Description

00b Copy to the least significant element

01b Copy to the second element

10b Copy to the third element

11b Copy to the most significant element

4. IMM8[7:6] specifies which element of arg2 ends up in the most significant element of arg2:

IMM8[7:6] Description

00b Copy to the least significant element

01b Copy to the second element

10b Copy to the third element

11b Copy to the most significant element

IMM8 Example

Consider the byte 0x1B:

Byte value 0x1B

Nibble value 0x1 0xB

2-bit integer (decimal) value 0 1 2 3

Bit value 0 0 0 1 1 0 1 1

Bit number (0 being LSB) 7 6 5 4 3 2 1 0

The 2-bit values shown above are used to determine which elements are copied to arg2. Bits 7-4 are "indexes" into arg2,
and bits 3-0 are "indexes" into the arg1.

Since bits 7-6 are 0, the least significant element of arg2 is copied to the most significant elements of arg2,
bits 127-96.
Since bits 5-4 are 1, the second element of arg2 is copied to third element of arg2, bits 95-64.
Since bits 3-2 are 2, the third element of arg1 is copied to the second element of arg2, bits 63-32.
Since bits 0-1 are 3, the fourth element of arg1 is copied to the least significant elements of arg2, bits (31-
0).

Note that since the first and second arguments are equal in the following example, the mask 0x1B will effectively reverse
the order of the floats in the XMM register, since the 2-bit integers are 0, 1, 2, 3. Had it been 3, 2, 1, 0 (0xE4) it would be a
no-op. Had it been 0, 0, 0, 0 (0x00) it would be a broadcast of the least significant 32 bits.

Example

.data 
 .align 16 
        v1: .float 1.1, 2.2, 3.3, 4.4 
        v2: .float 5.5, 6.6, 7.7, 8.8 
        v3: .float 0, 0, 0, 0 
  
.text 
.global _start  
_start:    
        movaps  v1,%xmm0        # load v1 into xmm0 to xmm6 
        movaps  v1,%xmm1 # using movaps since v1 is 16 byte aligned 



        movaps  v1,%xmm2 
        movaps  v1,%xmm3 
        movaps  v1,%xmm4 
        movaps  v1,%xmm5 
        movaps  v1,%xmm6 
  
        shufps $0x1b, %xmm0, %xmm0 # reverse order of the 4 floats 
        shufps $0x00, %xmm1, %xmm1 # Broadcast least significant element to all elements 
        shufps $0x55, %xmm2, %xmm2 # Broadcast second element to all elements 
        shufps $0xAA, %xmm3, %xmm3 # Broadcast third element to all elements 
        shufps $0xFF, %xmm4, %xmm4 # Broadcast most significant element to all elements 
        shufps $0x39, %xmm5, %xmm5 # Rotate elements right 
        shufps $0x93, %xmm6, %xmm6 # Rotate elements left  
 
        movups  %xmm0,v3        #store v1 in v3 
        ret 

Using GAS to build an ELF executable

as -g shufps.S -o shufps.o 
ld -g shufps.o 

SSE 4.2 adds four string text processing instructions PCMPISTRI, PCMPISTRM, PCMPESTRI and PCMPESTRM. These
instructions take three parameters, arg1 an xmm register, arg2 an xmm or a 128-bit memory location and IMM8 an 8-bit
immediate control byte. These instructions will perform arithmetic comparison between the packed contents of arg1 and
arg2. IMM8 specifies the format of the input/output as well as the operation of two intermediate stages of processing. The
results of stage 1 and stage 2 of intermediate processing will be referred to as IntRes1 and IntRes2 respectively. These
instructions also provide additional information about the result through overload use of the arithmetic flags(AF, CF, OF,
PF, SF and ZF).

The instructions proceed in multiple steps:

1. arg1 and arg2 are compared
2. An aggregation operation is applied to the result of the comparison with the result flowing into IntRes1
3. An optional negation is performed with the result flowing into IntRes2
4. An output in the form of an index(in ECX) or a mask(in XMM0) is produced

IMM8 control byte is split into four group of bit fields that control the following settings:

1. IMM8[1:0] specifies the format of the 128-bit source data(arg1 and arg2):

IMM8[1:0] Description

00b unsigned bytes(16 packed unsigned bytes)

01b unsigned words(8 packed unsigned words)

10b signed bytes(16 packed signed bytes)

11b signed words(8 packed signed words)

2. IMM8[3:2] specifies the aggregation operation whose result will be placed in intermediate result 1, which
we will refer to as IntRes1. The size of IntRes1 will depend on the format of the source data, 16-bit for
packed bytes and 8-bit for packed words:

Text Processing Instructions

IMM8 control byte description



IMM8[3:2] Description

00b

Equal Any, arg1 is a character set, arg2 is the string to search in. IntRes1[i] is set to 1 if arg2[i] is in the set
represented by arg1:

              arg1    = "aeiou" 
              arg2    = "Example string 1" 
              IntRes1 =  0010001000010000 

01b

Ranges, arg1 is a set of character ranges i.e. "09az" means all characters from 0 to 9 and from a to z., arg2 is the
string to search over. IntRes1[i] is set to 1 if arg[i] is in any of the ranges represented by arg1:

              arg1    = "09az" 
              arg2    = "Testing 1 2 3, T" 
              IntRes1 =  0111111010101000 

10b

Equal Each, arg1 is string one and arg2 is string two. IntRes1[i] is set to 1 if arg1[i] == arg2[i]:

              arg1    = "The quick brown " 
              arg2    = "The quack green " 
              IntRes1 =  1111110111010011 

11b

Equal Ordered, arg1 is a substring string to search for, arg2 is the string to search within. IntRes1[i] is set to 1 if the
substring arg1 can be found at position arg2[i]:

              arg1    = "he" 
              arg2    = ", he helped her " 
              IntRes1 =  0010010000001000 

3. IMM8[5:4] specifies the polarity or the processing of IntRes1, into intermediate result 2, which will be
referred to as IntRes2:

IMM8[5:4] Description

00b Positive Polarity IntRes2 = IntRes1

01b Negative Polarity IntRes2 = -1 XOR IntRes1

10b Masked Positive IntRes2 = IntRes1

11b Masked Negative IntRes2 = IntRes1 if reg/mem[i] is invalid else ~IntRes1

4. IMM8[6] specifies the output selection, or how IntRes2 will be processed into the output. For PCMPESTRI
and PCMPISTRI, the output is an index into the data currently referenced by arg2:

IMM8[6] Description

0b Least Significant Index ECX contains the least significant set bit in IntRes2

1b Most Significant Index ECX contains the most significant set bit in IntRes2

5. For PCMPESTRM and PCMPISTRM, the output is a mask reflecting all the set bits in IntRes2:

IMM8[6] Description

0b Least Significant
Index

Bit Mask, the least significant bits of XMM0 contain the IntRes2 16(8) bit mask. XMM0 is zero
extended to 128-bits.

1b Most Significant
Index Byte/Word Mask, XMM0 contains IntRes2 expanded into byte/word mask

6. IMM8[7] should be set to zero since it has no designed meaning.

pcmpistri IMM8, arg2, arg1 GAS Syntax

pcmpistri arg1, arg2, IMM8 Intel Syntax

The Four Instructions
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PCMPISTRI, Packed Compare Implicit Length Strings, Return Index. Compares strings of implicit length and generates
index in ECX.

Operands

arg1

XMM Register
Memory

arg2

XMM Register

IMM8

8-bit Immediate value

Modified flags

1. CF is reset if IntRes2 is zero, set otherwise
2. ZF is set if a null terminating character is found in arg2, reset otherwise
3. SF is set if a null terminating character is found in arg1, reset otherwise
4. OF is set to IntRes2[0]
5. AF is reset
6. PF is reset

Example

; 
; nasm -felf32 -g sse4_2StrPcmpistri.asm -l sse4_2StrPcmpistri.lst 
; gcc -o sse4_2StrPcmpistri sse4_2StrPcmpistri.o 
; 
global main  
 
extern printf 
extern strlen 
extern strcmp 
 
section .data 
 align 4 
 ; 
 ; Fill buf1 with a repeating pattern of ABCD 
 ; 
 buf1:  times 10 dd 0x44434241 
 s1:  db "This is a string", 0 
 s2:  db "This is a string slightly different string", 0 
 s3:  db "This is a str", 0 
 fmtStr1: db "String: %s len: %d", 0x0A, 0 
 fmtStr1b: db "strlen(3): String: %s len: %d", 0x0A, 0 
 fmtStr2: db "s1: =%s= and s2: =%s= compare: %d", 0x0A, 0 
 fmtStr2b: db "strcmp(3): s1: =%s= and s2: =%s= compare: %d", 0x0A, 0 
 
; 
; Functions will follow the cdecl call convention 
; 
section .text 
 main:   ; Using main since we are using gcc to link 
 
 sub esp, -16 ; 16 byte align the stack 
 sub esp, 16  ; space for four 4 byte parameters 
 
 ; 
 ; Null terminate buf1, make it proper C string, length is now 39 
 ; 
 mov [buf1+39], byte 0x00 
 
 lea eax, [buf1] 
 mov [esp], eax ; Arg1: pointer of string to calculate the length of 
 mov ebx, eax ; Save pointer in ebx since we will use it again 
 call strlenSSE42 
 mov edx, eax ; Copy length of arg1 into edx 
  
 mov [esp+8], edx ; Arg3: length of string 
 mov [esp+4], ebx ; Arg2: pointer to string 
 lea eax, [fmtStr1] 
 mov [esp], eax ; Arg1: pointer to format string 
 call printf  ; Call printf(3): 
    ; int printf(const char *format, ...); 
 
 lea eax, [buf1] 



 mov [esp], eax ; Arg1: pointer of string to calculate the length of 
 mov ebx, eax ; Save pointer in ebx since we will use it again 
 call strlen  ; Call strlen(3): 
    ; size_t strlen(const char *s); 
 mov edx, eax ; Copy length of arg1 into edx 
  
 mov [esp+8], edx ; Arg3: length of string 
 mov [esp+4], ebx ; Arg2: pointer to string 
 lea eax, [fmtStr1b] 
 mov [esp], eax ; Arg1: pointer to format string 
 call printf  ; Call printf(3): 
    ; int printf(const char *format, ...); 
 
 lea eax, [s2] 
 mov [esp+4], eax ; Arg2: pointer to second string to compare 
 lea eax, [s1] 
 mov [esp], eax ; Arg1: pointer to first string to compare 
 call strcmpSSE42 
 
 mov [esp+12], eax ; Arg4: result from strcmpSSE42   
 lea eax, [s2] 
 mov [esp+8], eax ; Arg3: pointer to second string 
 lea eax, [s1] 
 mov [esp+4], eax ; Arg2: pointer to first string 
 lea eax, [fmtStr2] 
 mov [esp], eax ; Arg1: pointer to format string 
 call printf 
 
 lea eax, [s2] 
 mov [esp+4], eax ; Arg2: pointer to second string to compare 
 lea eax, [s1] 
 mov [esp], eax ; Arg1: pointer to first string to compare 
 call strcmp  ; Call strcmp(3): 
    ; int strcmp(const char *s1, const char *s2); 
 
 mov [esp+12], eax ; Arg4: result from strcmpSSE42   
 lea eax, [s2] 
 mov [esp+8], eax ; Arg3: pointer to second string 
 lea eax, [s1] 
 mov [esp+4], eax ; Arg2: pointer to first string 
 lea eax, [fmtStr2b] 
 mov [esp], eax ; Arg1: pointer to format string 
 call printf 
 
 lea eax, [s3] 
 mov [esp+4], eax ; Arg2: pointer to second string to compare 
 lea eax, [s1] 
 mov [esp], eax ; Arg1: pointer to first string to compare 
 call strcmpSSE42 
 
 mov [esp+12], eax ; Arg4: result from strcmpSSE42   
 lea eax, [s3] 
 mov [esp+8], eax ; Arg3: pointer to second string 
 lea eax, [s1] 
 mov [esp+4], eax ; Arg2: pointer to first string 
 lea eax, [fmtStr2] 
 mov [esp], eax ; Arg1: pointer to format string 
 call printf 
 
 lea eax, [s3] 
 mov [esp+4], eax ; Arg2: pointer to second string to compare 
 lea eax, [s1] 
 mov [esp], eax ; Arg1: pointer to first string to compare 
 call strcmp  ; Call strcmp(3): 
    ; int strcmp(const char *s1, const char *s2); 
 
 mov [esp+12], eax ; Arg4: result from strcmpSSE42   
 lea eax, [s3] 
 mov [esp+8], eax ; Arg3: pointer to second string 
 lea eax, [s1] 
 mov [esp+4], eax ; Arg2: pointer to first string 
 lea eax, [fmtStr2b] 
 mov [esp], eax ; Arg1: pointer to format string 
 call printf 
 
 call exit 
 
 
; 
; size_t strlen(const char *s); 
; 
strlenSSE42: 
 push ebp 
 mov ebp, esp 
 
 mov edx, [ebp+8] ; Arg1: copy s(pointer to string) to edx  
 ; 
 ; We are looking for null terminating char, so set xmm0 to zero 
 ; 
 pxor xmm0, xmm0 
 mov eax, -16 ; Avoid extra jump in main loop 
 
strlenLoop: 
 add eax, 16 
 ; 
 ; IMM8[1:0] = 00b 
 ; Src data is unsigned bytes(16 packed unsigned bytes) 



 ; IMM8[3:2] = 10b 
 ;  We are using Equal Each aggregation 
 ; IMM8[5:4] = 00b 
 ; Positive Polarity, IntRes2 = IntRes1 
 ; IMM8[6] = 0b 
 ; ECX contains the least significant set bit in IntRes2 
 ; 
 pcmpistri xmm0,[edx+eax], 0001000b 
 ; 
 ; Loop while ZF != 0, which means none of bytes pointed to by edx+eax 
 ; are zero. 
 ; 
 jnz strlenLoop 
  
 ; 
 ; ecx will contain the offset from edx+eax where the first null 
 ; terminating character was found. 
 ; 
 add eax, ecx 
 pop ebp 
 ret 
 
; 
; int strcmp(const char *s1, const char *s2); 
; 
strcmpSSE42: 
 push ebp 
 mov ebp, esp 
 
 mov eax, [ebp+8] ; Arg1: copy s1(pointer to string) to eax 
 mov edx, [ebp+12] ; Arg2: copy s2(pointer to string) to edx 
 ; 
 ; Subtract s2(edx) from s1(eax). This admititedly looks odd, but we 
 ; can now use edx to index into s1 and s2. As we adjust edx to move 
 ; forward into s2, we can then add edx to eax and this will give us 
 ; the comparable offset into s1 i.e. if we take edx + 16 then: 
 ; 
 ; edx  = edx + 16  = edx + 16 
 ; eax+edx = eax -edx + edx + 16 = eax + 16 
 ; 
 ; therefore edx points to s2 + 16 and eax + edx points to s1 + 16. 
 ; We thus only need one index, convoluted but effective. 
 ; 
 sub eax, edx 
 sub edx, 16  ; Avoid extra jump in main loop 
 
strcmpLoop: 
 add edx, 16 
 movdqu xmm0, [edx] 
 ; 
 ; IMM8[1:0] = 00b 
 ; Src data is unsigned bytes(16 packed unsigned bytes) 
 ; IMM8[3:2] = 10b 
 ;  We are using Equal Each aggregation 
 ; IMM8[5:4] = 01b 
 ; Negative Polarity, IntRes2 = -1 XOR IntRes1 
 ; IMM8[6] = 0b 
 ; ECX contains the least significant set bit in IntRes2 
 ; 
 pcmpistri xmm0, [edx+eax], 0011000b 
 ; 
 ; Loop while ZF=0 and CF=0: 
 ; 
 ; 1) We find a null in s1(edx+eax) ZF=1 
 ; 2) We find a char that does not match CF=1 
 ; 
 ja strcmpLoop 
 
 ; 
 ; Jump if CF=1, we found a mismatched char 
 ; 
 jc strcmpDiff 
 
 ; 
 ; We terminated loop due to a null character i.e. CF=0 and ZF=1 
 ; 
 xor eax, eax ; They are equal so return zero 
 jmp exitStrcmp 
 
strcmpDiff: 
 add eax, edx ; Set offset into s1 to match s2 
 ; 
 ; ecx is offset from current poition where two strings do not match, 
 ; so copy the respective non-matching byte into eax and edx and fill 
 ; in remaining bits w/ zero. 
 ; 
 movzx eax, byte[eax+ecx] 
 movzx edx, byte[edx+ecx] 
 ; 
 ; If s1 is less than s2 return integer less than zero, otherwise return 
 ; integer greater than zero. 
 ; 
 sub eax, edx 
 
exitStrcmp: 
 pop ebp 
 ret 



 
exit: 
    ; 
    ; Call exit(3) syscall 
    ; void exit(int status) 
    ; 
 mov ebx, 0  ; Arg one: the status 
 mov eax, 1  ; Syscall number: 
 int  0x80 

Expected output:

String: ABCDABCDABCDABCDABCDABCDABCDABCDABCDABC len: 39 
strlen(3): String: ABCDABCDABCDABCDABCDABCDABCDABCDABCDABC len: 39 
s1: =This is a string= and s2: =This is a string slightly different string= compare: -32 
strcmp(3): s1: =This is a string= and s2: =This is a string slightly different string= compare: -32 
s1: =This is a string= and s2: =This is a str= compare: 105 
strcmp(3): s1: =This is a string= and s2: =This is a str= compare: 105 

 

pcmpistrm IMM8, arg2, arg1 GAS Syntax

pcmpistrm arg1, arg2, IMM8 Intel Syntax

PCMPISTRM, Packed Compare Implicit Length Strings, Return Mask. Compares strings of implicit length and generates a
mask stored in XMM0.

Operands

arg1

XMM Register

arg2

XMM Register
Memory

IMM8

8-bit Immediate value

 
Modified flags

1. CF is reset if IntRes2 is zero, set otherwise
2. ZF is set if a null terminating character is found in arg2, reset otherwise
3. SF is set if a null terminating character is found in arg2, reset otherwise
4. OF is set to IntRes2[0]
5. AF is reset
6. PF is reset

 

pcmpestri IMM8, arg2, arg1 GAS Syntax

pcmpestri arg1, arg2, IMM8 Intel Syntax

PCMPESTRI, Packed Compare Explicit Length Strings, Return Index. Compares strings of explicit length and generates
index in ECX.

Operands

arg1

XMM Register
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arg2

XMM Register
Memory

IMM8

8-bit Immediate value

 
Implicit Operands

EAX holds the length of arg1
EDX holds the length of arg2

 
Modified flags

1. CF is reset if IntRes2 is zero, set otherwise
2. ZF is set if EDX is < 16(for bytes) or 8(for words), reset otherwise
3. SF is set if EAX is < 16(for bytes) or 8(for words), reset otherwise
4. OF is set to IntRes2[0]
5. AF is reset
6. PF is reset

 

pcmpestrm IMM8, arg2, arg1 GAS Syntax

pcmpestrm arg1, arg2, IMM8 Intel Syntax

PCMPESTRM, Packed Compare Explicit Length Strings, Return Mask. Compares strings of explicit length and generates a
mask stored in XMM0.

Operands

arg1

XMM Register

arg2

XMM Register
Memory

IMM8

8-bit Immediate value

 
Implicit Operands

EAX holds the length of arg1
EDX holds the length of arg2

 
Modified flags

1. CF is reset if IntRes2 is zero, set otherwise
2. ZF is set if EDX is < 16(for bytes) or 8(for words), reset otherwise
3. SF is set if EAX is < 16(for bytes) or 8(for words), reset otherwise
4. OF is set to IntRes2[0]
5. AF is reset
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6. PF is reset

There are literally hundreds of SSE instructions, some of which are capable of much more than simple SIMD arithmetic.
For more in-depth references take a look at the resources chapter of this book.

You may notice that many floating point SSE instructions end with something like PS or SD. These suffixes differentiate
between different versions of the operation. The first letter describes whether the instruction should be Packed or Scalar.
Packed operations are applied to every member of the register, while scalar operations are applied to only the first value.
For example, in pseudo-code, a packed add would be executed as:

v1[0] = v1[0] + v2[0] 
v1[1] = v1[1] + v2[1] 
v1[2] = v1[2] + v2[2] 
v1[3] = v1[3] + v2[3] 

While a scalar add would only be:

v1[0] = v1[0] + v2[0] 

The second letter refers to the data size: either Single or Double. This simply tells the processor whether to use the register
as four 32-bit floats or two 64-bit doubles, respectively.

Floating-point Instructions:

ADDPS, ADDSS, CMPPS, CMPSS, COMISS, CVTPI2PS, CVTPS2PI, CVTSI2SS, CVTSS2SI, CVTTPS2PI,
CVTTSS2SI, DIVPS, DIVSS, LDMXCSR, MAXPS, MAXSS, MINPS, MINSS, MOVAPS, MOVHLPS, MOVHPS,
MOVLHPS, MOVLPS, MOVMSKPS, MOVNTPS, MOVSS, MOVUPS, MULPS, MULSS, RCPPS, RCPSS, RSQRTPS,
RSQRTSS, SHUFPS, SQRTPS, SQRTSS, STMXCSR, SUBPS, SUBSS, UCOMISS, UNPCKHPS, UNPCKLPS

Integer Instructions:

ANDNPS, ANDPS, ORPS, PAVGB, PAVGW, PEXTRW, PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB,
PMOVMSKB, PMULHUW, PSADBW, PSHUFW, XORPS

Floating-point Instructions:

ADDPD, ADDSD, ANDNPD, ANDPD, CMPPD, CMPSD*, COMISD, CVTDQ2PD, CVTDQ2PS, CVTPD2DQ,
CVTPD2PI, CVTPD2PS, CVTPI2PD, CVTPS2DQ, CVTPS2PD, CVTSD2SI, CVTSD2SS, CVTSI2SD, CVTSS2SD,
CVTTPD2DQ, CVTTPD2PI, CVTTPS2DQ, CVTTSD2SI, DIVPD, DIVSD, MAXPD, MAXSD, MINPD, MINSD,
MOVAPD, MOVHPD, MOVLPD, MOVMSKPD, MOVSD*, MOVUPD, MULPD, MULSD, ORPD, SHUFPD, SQRTPD,
SQRTSD, SUBPD, SUBSD, UCOMISD, UNPCKHPD, UNPCKLPD, XORPD

* CMPSD and MOVSD have the same name as the string instruction mnemonics CMPSD (CMPS) and
MOVSD (MOVS); however, the former refer to scalar double-precision floating-points whereas the latter
refer to doubleword strings.

Integer Instructions:

MOVDQ2Q, MOVDQA, MOVDQU, MOVQ2DQ, PADDQ, PSUBQ, PMULUDQ, PSHUFHW, PSHUFLW, PSHUFD,
PSLLDQ, PSRLDQ, PUNPCKHQDQ, PUNPCKLQDQ

SSE Instruction Set

SSE: Added with Pentium III

SSE2: Added with Pentium 4

SSE3: Added with later Pentium 4
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ADDSUBPD, ADDSUBPS, HADDPD, HADDPS, HSUBPD, HSUBPS, MOVDDUP, MOVSHDUP, MOVSLDUP

PSIGNW, PSIGND, PSIGNB, PSHUFB, PMULHRSW, PMADDUBSW, PHSUBW, PHSUBSW, PHSUBD, PHADDW,
PHADDSW, PHADDD, PALIGNR, PABSW, PABSD, PABSB

MPSADBW, PHMINPOSUW, PMULLD, PMULDQ, DPPS, DPPD, BLENDPS, BLENDPD, BLENDVPS, BLENDVPD,
PBLENDVB, PBLENDW, PMINSB, PMAXSB, PMINUW, PMAXUW, PMINUD, PMAXUD, PMINSD, PMAXSD,
ROUNDPS, ROUNDSS, ROUNDPD, ROUNDSD, INSERTPS, PINSRB, PINSRD, PINSRQ, EXTRACTPS, PEXTRB,
PEXTRW, PEXTRD, PEXTRQ, PMOVSXBW, PMOVZXBW, PMOVSXBD, PMOVZXBD, PMOVSXBQ,
PMOVZXBQ, PMOVSXWD, PMOVZXWD, PMOVSXWQ, PMOVZXWQ, PMOVSXDQ, PMOVZXDQ, PTEST,
PCMPEQQ, PACKUSDW, MOVNTDQA

LZCNT, POPCNT, EXTRQ, INSERTQ, MOVNTSD, MOVNTSS

CRC32, PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM, PCMPGTQ

3D Now
This section of the x86 Assembly book is a stub. You can help by expanding this section.

3DNow! is AMD's extension of the MMX instruction set (K6-2 and more recent) for with floating-point instruction. The
instruction set never gained much popularity, and AMD announced on August 2010 that support for 3DNow! will be
dropped in future AMD processors, except for two instructions.

 

Advanced x86
These "Advanced x86" chapters all cover specialized topics that might not be of interest to the average assembly
programmer. However, these chapters should be of some interest to people who would like to work on low-level
programming tasks, such as boot loaders, device drivers, and Operating System kernels. A programmer does not need to
read the following chapters to say they "know assembly", although they may be interesting. The topics covered in this
section are:

High-Level Languages
Machine Language Conversion
Protected Mode
Global Descriptor Table
Advanced Interrupts
Bootloaders

 

High-Level Languages

SSSE3: Added with Xeon 5100 and early Core 2

SSE4

SSE4.1: Added with later Core 2

SSE4a: Added with Phenom

SSE4.2: Added with Nehalem
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Very few projects are written entirely in assembly. It's often used for accessing processor-specific features, optimizing
critical sections of code, and very low-level work, but for many applications, it can be simpler and easier to implement the
basic control flow and data manipulation routines in a higher level language, like C. For this reason, it is often necessary to
interface between assembly language and other languages.

The first compilers were simply text translators that converted a high-level language into assembly language. The assembly
language code was then fed into an assembler, to create the final machine code output. The GCC compiler still performs
this sequence (code is compiled into assembly, and fed to the AS assembler). However, many modern compilers will skip
the assembly language and create the machine code directly.

Assembly language code has the benefit that it is in one-to-one correspondence with the underlying machine code. Each
machine instruction is mapped directly to a single Assembly instruction. Because of this, even when a compiler directly
creates the machine code, it is still possible to interface that code with an assembly language program. The important part is
knowing exactly how the language implements its data structures, control structures, and functions. The method in which
function calls are implemented by a high-level language compiler is called a calling convention.

The calling convention is a contract between the function and caller of the function and specifies several parameters:

1. How the arguments are passed to the function, and in what order? Are they pushed onto the stack, or are
they passed in via the registers?

2. How are return values passed back to the caller? This is usually via registers or on the stack.
3. What processor states are volatile (available for modification)? Volatile registers are available for

modification by the function. The caller is responsible for saving the state of those registers if needed. Non-
volatile registers are guaranteed to be preserved by the function. The called function is responsible for
saving the state of those registers and restoring those registers on exit.

4. The function prologue and epilogue, which sets up the registers and stack for use within the function and
then restores the stack and registers before exiting.

For C compilers, the CDECL calling convention is the de facto standard. It varies by compiler, but the programmer can
specify that a function be implemented using CDECL usually by pre-appending the function declaration with a keyword,
for example __cdecl in Visual studio:

int __cdecl func() 

in gcc it would be __attribute__( (__cdecl__ )):

int __attribute__((__cdecl__ )) func() 

CDECL calling convention specifies a number of different requirements:

1. Function arguments are passed on the stack, in right-to-left order.
2. Function result is stored in EAX/AX/AL
3. Floating point return values will be returned in ST0
4. The function name is pre-appended with an underscore.
5. The arguments are popped from the stack by the caller itself.
6. 8-bit and 16-bit integer arguments are promoted to 32-bit arguments.
7. The volatile registers are: EAX, ECX, EDX, ST0 - ST7, ES and GS
8. The non-volatile registers are: EBX, EBP, ESP, EDI, ESI, CS and DS
9. The function will exit with a RET instruction.

Compilers

C Calling Conventions

CDECL



10. The function is supposed to return values types of class or structure via a reference in EAX/AX. The space is
supposed to be allocated by the function, which unable to use the stack or heap is left with fixed address in
static non-constant storage. This is inherently not thread safe. Many compilers will break the calling
convention:

1. GCC has the calling code allocate space and passes a pointer to this space via a hidden parameter on
the stack. The called function writes the return value to this address.

2. Visual C++ will:

1. Pass POD return values 32 bits or smaller in the EAX register.
2. Pass POD return values 33-64 bits in size via the EAX:EDX registers
3. For non-POD return values or values larger than 64-bits, the calling code will allocate space and

passes a pointer to this space via a hidden parameter on the stack. The called function writes the
return value to this address.

 
CDECL functions are capable of accepting variable argument lists. Below is example using cdecl calling convention:

global main 
 
extern printf 
 
section .data 
 align 4 
 a: dd 1 
 b: dd 2 
 c: dd 3 
 fmtStr: db "Result: %d", 0x0A, 0 
 
section .bss 
 align 4 
 
section .text 
     
; 
; int func( int a, int b, int c ) 
; { 
; return a + b + c ; 
; } 
; 
func: 
 push ebp  ; Save ebp on the stack 
 mov ebp, esp ; Replace ebp with esp since we will be using 
    ; ebp as the base pointer for the functions 
    ; stack. 
    ; 
    ; The arguments start at ebp+8 since calling the 
    ; the function places eip on the stack and the 
    ; function places ebp on the stack as part of 
    ; the preamble. 
    ; 
 mov eax, [ebp+8] ; mov a int eax 
 mov edx, [ebp+12] ; add b to eax 
 lea eax, [eax+edx] ; Using lea for arithmetic adding a + b into eax 
 add eax, [ebp+16] ; add c to eax 
 pop ebp  ; restore ebp 
 ret   ; Returning, eax contains result 
 
 ; 
 ; Using main since we are using gcc to link 
 ; 
 main: 
 
 ; 
 ; Set up for call to func(int a, int b, int c) 
 ; 
 ; Push variables in right to left order 
 ; 
 push dword [c] 
 push dword [b] 
 push dword [a] 
 call func 
 add esp, 12  ; Pop stack 3 times 4 bytes 
 push eax 
 push dword fmtStr 
 call printf 
 add esp, 8  ; Pop stack 2 times 4 bytes 
 
 ; 
 ; Alternative to using push for function call setup, this is the method 
 ; used by gcc 
 ; 
 sub esp, 12  ; Create space on stack for three 4 byte variables 
 mov ecx, [b] 
 mov eax, [a] 
 mov [esp+8], dword 4 
 mov [esp+4], ecx 



 mov [esp],  eax 
 call func 
 ;push eax 
 ;push dword fmtStr 
 mov [esp+4], eax 
 lea eax, [fmtStr] 
 mov [esp], eax 
 call printf 
 
    ; 
    ; Call exit(3) syscall 
    ; void exit(int status) 
    ; 
 mov ebx, 0  ; Arg one: the status 
 mov eax, 1  ; Syscall number: 
 int  0x80 

In order to assemble, link and run the program we need to do the following:

nasm -felf32 -g cdecl.asm 
gcc -o cdecl cdecl.o 
./cdecl 

STDCALL is the calling convention that is used when interfacing with the Win32 API on Microsoft Windows systems.
STDCALL was created by Microsoft, and therefore isn't always supported by non-Microsoft compilers. It varies by
compiler but, the programmer can specify that a function be implemented using STDCALL usually by pre-appending the
function declaration with a keyword, for example __stdcall in Visual studio:

int __stdcall func() 

in gcc it would be __attribute__( (__stdcall__ )):

int __attribute__((__stdcall__ )) func() 

STDCALL has the following requirements:

1. Function arguments are passed on the stack in right-to-left order.
2. Function result is stored in EAX/AX/AL
3. Floating point return values will be returned in ST0
4. 64-bits integers and 32/16 bit pointers will be returned via the EAX:EDX registers.
5. 8-bit and 16-bit integer arguments are promoted to 32-bit arguments.
6. Function name is prefixed with an underscore
7. Function name is suffixed with an "@" sign, followed by the number of bytes of arguments being passed to

it.
8. The arguments are popped from the stack by the callee (the called function).
9. The volatile registers are: EAX, ECX, EDX, and ST0 - ST7

10. The non-volatile registers are: EBX, EBP, ESP, EDI, ESI, CS, DS, ES, FS and GS
11. The function will exit with a RET n instruction, the called function will pop n additional bytes off the stack

when it returns.
12. POD return values 32 bits or smaller will be returned in the EAX register.
13. POD return values 33-64 bits in size will be returned via the EAX:EDX registers.
14. Non-POD return values or values larger than 64-bits, the calling code will allocate space and passes a

pointer to this space via a hidden parameter on the stack. The called function writes the return value to this
address.

STDCALL functions are not capable of accepting variable argument lists.

For example, the following function declaration in C:

_stdcall void MyFunction(int, int, short); 

would be accessed in assembly using the following function label:

STDCALL



_MyFunction@12 

Remember, on a 32 bit machine, passing a 16 bit argument on the stack (C "short") takes up a full 32 bits of space.

FASTCALL functions can frequently be specified with the __fastcall keyword in many compilers. FASTCALL functions
pass the first two arguments to the function in registers, so that the time-consuming stack operations can be avoided.
FASTCALL has the following requirements:

1. The first 32-bit (or smaller) argument is passed in ECX/CX/CL (see [1] (http://msdn.microsoft.com/en-us/libra
ry/6xa169sk.aspx))

2. The second 32-bit (or smaller) argument is passed in EDX/DX/DL
3. The remaining function arguments (if any) are passed on the stack in right-to-left order
4. The function result is returned in EAX/AX/AL
5. The function name is prefixed with an "@" symbol
6. The function name is suffixed with an "@" symbol, followed by the size of passed arguments, in bytes.

The C++ THISCALL calling convention is the standard calling convention for C++. In THISCALL, the function is called
almost identically to the CDECL convention, but the this pointer (the pointer to the current class) must be passed.

The way that the this pointer is passed is compiler-dependent. Microsoft Visual C++ passes it in ECX. GCC passes it as if
it were the first parameter of the function. (i.e. between the return address and the first formal parameter.)

The Pascal convention is essentially identical to cdecl, differing only in that:

1. The parameters are pushed left to right (logical western-world reading order)
2. The routine being called must clean the stack before returning

Additionally, each parameter on the 32-bit stack must use all four bytes of the DWORD, regardless of the actual size of the
datum.

This is the main calling method used by Windows API routines, as it is slightly more efficient with regard to memory
usage, stack access and calling speed.

 
Note: the Pascal convention is NOT the same as the Borland Pascal convention, which is a form of fastcall, using registers
(eax, edx, ecx) to pass the first three parameters, and also known as Register Convention.

This Borland C++ example splits byte_data into two bytes in buf, the first containing high 4 bits and low 4 bits in the
second.

void ByteToHalfByte(BYTE *buf, int pos, BYTE byte_data) 
{ 

FASTCALL

C++ Calling Conventions (THISCALL)

Ada Calling Conventions

Pascal Calling Conventions

Fortran Calling Conventions

Inline Assembly

C/C++
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  asm 
  { 
    mov al, byte_data 
    mov ah, al 
    shr al, 04h 
    and ah, 0Fh 
    mov ecx, buf 
    mov edx, pos 
    mov [ecx+edx], al 
    mov [ecx+edx+1], ah 
  } 
} 

The FreePascal Compiler (FPC) and GNU Pascal Compiler (GPC) allow asm-blocks. While GPC only accepts AT&T-
syntax, FPC can work with both, and allows a direct pass-through to the assembler. The following two examples are written
to work with FPC (regarding compiler directives).

program asmDemo(input, output, stderr); 
 
// The $asmMode directive informs the compiler 
// which syntax is used in asm-blocks. 
// Alternatives are 'att' (AT&T syntax) and 'direct'. 
{$asmMode intel} 
 
var 
 n, m: longint; 
begin 
 n := 42; 
 m := -7; 
 writeLn('n = ', n, '; m = ', m); 
  
 // instead of declaring another temporary variable 
 // and writing "tmp := n; n := m; m := tmp;": 
 asm 
  mov rax, n // rax := n 
  // xchg can only operate at most on one memory address 
  xchg rax, m // swaps values in rax and at m 
  mov n, rax // n := rax (holding the former m value) 
 // an array of strings after the asm-block closing 'end' 
 // tells the compiler which registers have changed 
 // (you don't wanna mess with the compiler's notion 
 // which registers mean what) 
 end ['rax']; 
  
 writeLn('n = ', n, '; m = ', m); 
end. 

In FreePascal you can also write whole functions in assembly language. Also note, that if you use labels, you have to
declare them beforehand (FPC requirement):

// the 'assembler' modifier allows us 
// to implement the whole function in assembly language 
function iterativeSquare(const n: longint): qword; assembler; 
// you have to familiarize the compiler with symbols 
// which are meant to be jump targets 
{$goto on} 
label 
 iterativeSquare_iterate, iterativeSquare_done; 
// note, the 'asm'-keyword instead of 'begin' 
{$asmMode intel} 
asm 
 // ecx is used as counter by loop instruction 
 mov ecx, n // ecx := n 
 mov rax, 0 // rax := 0 
 mov r8, 1 // r8 := 1 
  
 cmp ecx, rax // ecx = rax [n = 0] 
 je iterativeSquare_done // n = 0 
  
 // ensure ecx is positive 
 // so we'll run against zero while decrementing 
 jg iterativeSquare_iterate // if n > 0 then goto iterate 
 neg ecx // ecx := ecx * -1 
  
 // n^2 = sum over first abs(n) odd integers 
iterativeSquare_iterate: 
 add rax, r8 // rax := rax + r8 
 inc r8 // inc(r8) twice 
 inc r8 // to get next odd integer 
 loop iterativeSquare_iterate // dec(ecx) 
 // if ecx <> 0 then goto iterate 
  
iterativeSquare_done: 
 // the @result macro represents the functions return value 

Pascal



 mov @result, rax // result := rax 
// note, a list of modified registers (here ['rax', 'ecx', 'r8']) 
//    is ignored for pure assembler routines 
end; 

For an in depth discussion as to how high-level programming constructs are translated into assembly language, see Reverse
Engineering.

Subject:C programming language
Subject:C++ programming language
x86 Disassembly/Calling Conventions
x86 Disassembly/Calling Convention Examples

Machine Language Conversion

X86 assembly instructions have a one-to-one relationship with the underlying machine instructions. This means that
essentially we can convert assembly instructions into machine instructions with a look-up table. This page will talk about
some of the conversions from assembly language to machine language.

The x86 architecture is a complex instruction set computer (CISC) architecture. Amongst other things, this means that
the instructions for the x86 architecture are of varying lengths. This can make the processes of assembly, disassembly and
instruction decoding more complicated, because the instruction length needs to be calculated for each instruction.

x86 instructions can be anywhere between 1 and 15 bytes long. The length is defined separately for each instruction,
depending on the available modes of operation of the instruction, the number of required operands and more.

This is the general instruction form for the 8086 sequentially in main memory:

Prefixes (optional)

Opcode (first byte) D W

Opcode 2 (occasional second byte)

MOD Reg R/M

Displacement or data (occasional: 1, 2 or 4 bytes)

Prefixes
Optional prefixes which change the operation of the instruction

D
(1 bit) Direction. 1 = Register is Destination, 0 = Register is source.

W
(1 bit) Operation size. 1 = Word, 0 = byte.

Opcode
the opcode is a 6 bit quantity that determines what instruction family the code is

MOD (Mod)
(2 bits) Register mode.

Reg
(3 bits) Register. Each register has an identifier.

R/M (r/m)
(3 bits) Register/Memory operand

Further Reading

Relationship to Machine Code

CISC and RISC

8086 instruction format (16 bit)
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Not all instructions have W or D bits; in some cases, the width of the operation is either irrelevant or implicit, and for other
operations the data direction is irrelevant.

Notice that Intel instruction format is little-endian, which means that the lowest-significance bytes are closest to absolute
address 0. Thus, words are stored low-byte first; the value 1234H is stored in memory as 34H 12H. By convention, most-
significant bits are always shown to the left within the byte, so 34H would be 00110100B.

After the initial 2 bytes, each instruction can have many additional addressing/immediate data bytes.

Mod Displacement
00 If r/m is 110, Displacement (16 bits) is address; otherwise, no displacement
01 Eight-bit displacement, sign-extended to 16 bits
10 16-bit displacement (example: MOV [BX + SI]+ displacement,al)
11 r/m is treated as a second "reg" field

Reg W = 0 W = 1 double word
000 AL AX EAX
001 CL CX ECX
010 DL DX EDX
011 BL BX EBX
100 AH SP ESP
101 CH BP EBP
110 DH SI ESI
111 BH DI EDI

r/m Operand address
000 (BX) + (SI) + displacement (0, 1 or 2 bytes long)
001 (BX) + (DI) + displacement (0, 1 or 2 bytes long)
010 (BP) + (SI) + displacement (0, 1 or 2 bytes long)
011 (BP) + (DI) + displacement (0, 1 or 2 bytes long)
100 (SI) + displacement (0, 1 or 2 bytes long)
101 (DI) + displacement (0, 1 or 2 bytes long)
110 (BP) + displacement unless mod = 00 (see mod table)
111 (BX) + displacement (0, 1 or 2 bytes long)

Note the special meaning of MOD 00, r/m 110. Normally, this would be expected to be the operand [BP]. However, instead
the 16-bit displacement is treated as the absolute address. To encode the value [BP], you would use mod = 01, r/m = 110, 8-
bit displacement = 0.

Let's translate the following instruction into machine code:

XOR CL, [12H] 

Note that this is XORing CL with the contents of address 12H – the square brackets are a common indirection indicator.
The opcode for XOR is "001100dw". D is 1 because the CL register is the destination. W is 0 because we have a byte of
data. Our first byte therefore is "00110010".

Now, we know that the code for CL is 001. Reg thus has the value 001. The address is specified as a simple displacement,
so the MOD value is 00 and the R/M is 110. Byte 2 is thus (00 001 110b).

Byte 3 and 4 contain the effective address, low-order byte first, 0012H as 12H 00H, or (00010010b) (00000000b)

Mod / Reg / R/M tables

Example: Absolute addressing



All together,

XOR CL, [12H] = 00110010 00001110 00010010 00000000 = 32H 0EH 12H 00H 

Now, if we were to want to use an immediate operand, as follows:

XOR CL, 12H 

In this case, because there are no square brackets, 12H is immediate: it is the number we are going to XOR against. The
opcode for an immediate XOR is 1000000w; in this case, we are using a byte, so w is 0. So our first byte is (10000000b).

The second byte, for an immediate operation, takes the form "mod 110 r/m". Since the destination is a register, mod is 11,
making the r/m field a register value. We already know that the register value for CL is 001, so our second byte is (11 110
001b).

The third byte (and fourth byte, if this were a word operation) are the immediate data. As it is a byte, there is only one byte
of data, 12H = (00010010b).

All together, then:

XOR CL, 12H = 10000000 11110001 00010010 = 80 F1 12 

The 32-bit instructions are encoded in a very similar way to the 16-bit instructions, except (by default) they act upon dword
quantities rather than words. Also, they support a much more flexible memory addressing format, which is made possible
by the addition of an SIB "scale-index-base" byte, which follows the ModR/M byte.

Continuing the previous absolute addressing example, we take this input:

XOR CL, [12H] 

...and we arrive at the 32-bit machine code like so:

Beginning with the opcode byte first, it remains the same, 32H. Consulting the Intel IA-32 manual, Volume 2C, Chapter 5,
"XOR"--we see this opcode defines that a) it requires 2 operands, b) the operands have a direction, and the first operand is
the destination, c) the first operand is a register of 8-bits width, d) the second operand is also 8-bit but can be either a
register or memory address, and e) the destination register CL will be overridden to contain the result of the operation. This
fits our case above, because the first operand is CL ("L" meaning lower 8-bits of the "C" register), and the second operand
is a reference the the value stored in memory at 12H (a direct/absolute pointer or address reference). It doesn't look like we
need any prefix bytes to get the operand sizes we want.

Now we know we need a ModR/M byte, because the opcode requires it; a) it requires more than zero operands, and b) they
are not defined within the opcode or any prefix, and c) there is no Immediate operand. So again we consult the Intel
manual, Volume 2A, Chapter 2, Section 2.1.5 "Addressing-Mode Encoding of ModR/M and SIB Bytes", Table 2-2 "32-Bit
Addressing Forms with the ModR/M Byte". We know the first operand is going to be our destination register. CL, so we
see that maps to REG=001b. Next we look for an Effective Address formula which matches our second operand, which is a
displacement with no register (and therefore no segment, base, scale, or index). The nearest match is going to be disp32, but
reading the table is tricky because of the footnotes. Basically our formula is not in that table, the one we want requires a
SIB byte noted as [--][--], which tells us we need to specify Mod=00b, R/M=100b to enable the SIB byte. Our second byte
is therefore 00001100b or 0CH.

Example: Immediate operand

x86 Instructions (32/64 bit)



We know the SIB byte, if it is used, always follows the ModR/M byte, so we continue to the next Table 2-3 "32-Bit
Addressing Forms with the SIB Byte" in the Intel manual, and look for the combination of Scale, Index, and Base values
which will give us the disp32 formula we need. Notice there is a footnote [*], this basically tells us to specify Scale=00b,
Index=100b, Base=101b which means disp32 with no index, no scale, and no base. So our third byte is now 25H.

We know the Displacement byte, if used, always follows the ModR/M and SIB byte, so here we simply specify our 32-bit
unsigned integer value in little-endian, meaning our next four bytes are 12000000H.

Finally, we have our machine code:

XOR CL, [12H] = 00110010 00001100 00100101 00010010 00000000 00000000 00000000 = 32 0C 25 12 00 00 00 

This instruction works in both 32-bit Protected mode and 64-bit Long mode.

Protected Mode
This page is going to discuss the differences between real mode and protected mode operations in the x86 processors. It
will also discuss how to enter protected mode, and how to exit protected mode. Modern Operating Systems (Windows,
Unix, Linux, BSD, etc...) all operate in protected mode, so most assembly language programmers won't need this
information. However, this information will be particularly useful to people who are trying to program kernels or
bootloaders.

When an x86 processor is powered up or reset, it is in real mode. In real mode, the x86 processor essentially acts like a very
fast 8086. Only the base instruction set of the processor can be used. Real mode memory address space is limited to 1MiB
of addressable memory, and each memory segment is limited to 64KiB. Real Mode is provided essentially for backwards-
compatibility with 8086 and 80186 programs.

In protected mode operation, the x86 can address 4 GB of address space. This may map directly onto the physical RAM (in
which case, if there is less than 4 GB of RAM, some address space is unused), or paging may be used to arbitrarily translate
between virtual addresses and physical addresses. In Protected mode, the segments in memory can be assigned protection,
and attempts to violate this protection cause a "General Protection" exception.

Protected mode in the 386, amongst other things, is controlled by the Control Registers, which are labelled CR0, CR2,
CR3, and CR4.

Protected mode in the 286 is controlled by the Machine Status Word.

Long mode was introduced by AMD with the advent of the Athlon64 processor. Long mode allows the microprocessor to
access 64-bit memory space, and access 64-bit long registers. Many 16 and 32-bit instructions do not work (or work
correctly) in Long Mode. x86-64 processors in Real mode act exactly the like 16 bit chips, and x86-64 chips in protected
mode act exactly like 32-bit processors. To unlock the 64-bit capabilities of the chip, the chip must be switched into Long
Mode.

The lowest 5 bits of the control register CR0 contain 5 flags that determine how the system is going to function. This status
register has 1 flag that we are particularly interested in: the "Protected Mode Enable" flag (PE). Here are the general steps
to entering protected mode:

1. Create a Valid GDT (Global Descriptor Table)

Real Mode Operation

Protected Mode Operation

Long Mode

Entering Protected Mode
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2. Create a 6 byte pseudo-descriptor to point to the GDT

3. 1. If paging is going to be used, load CR3 with a valid page table, PDBR, or PML4.
2. If PAE (Physical Address Extension) is going to be used, set CR4.PAE = 1.
3. If switching to long mode, set IA32_EFER.LME = 1.

4. Disable Interrupts (CLI).
5. Load an IDT pseudo-descriptor that has a null limit (this prevents the real mode IDT from being used in

protected mode)
6. Set the PE bit (and the PG bit if paging is going to be enabled) of the MSW or CR0 register
7. Execute a far jump (in case of switching to long mode, even if the destination code segment is a 64-bit code

segment, the offset must not exceed 32-bit since the far jump instruction is executed in compatibility mode)
8. Load data segment registers with valid selector(s) to prevent GP exceptions when interrupts happen
9. Load SS:(E)SP with a valid stack

10. Load an IDT pseudo-descriptor that points to the IDT
11. Enable Interrupts.

Following sections will talk more about these steps.

To enter Long Mode on a 64-bit x86 processor (x86-64):

1. If paging is enabled, disable paging.
2. If CR4.PAE is not already set, set it.
3. Set IA32_EFER.LME = 1.
4. Load CR3 with a valid PML4 table.
5. Enable paging.
6. At this point you will be in compatibility mode. A far jump may be executed to switch to long mode. However,

the offset must not exceed 32-bit.

Many bits of the CR registers only influence behavior in protected mode.

The CR0 32-bit register has 6 bits that are of interest to us. The low 5 bits of the CR0 register, and the highest bit. Here is a
representation of CR0:

CR0: |PG|----RESERVED----|NE|ET|TS|EM|MP|PE| 

 

PE
Bit 0. The Protected Environment flag. This flag puts the system into protected mode when set.

MP
Bit 1. The Monitor Coprocessor flag. This flag controls the operation of the "WAIT" instruction.

EM
Bit 2. The Emulate flag. When this flag is set, coprocessor instructions will generate an exception.

TS
Bit 3. The Task Switched flag. This flag is set automatically when the processor switches to a new task.

ET
Bit 4. The Extension Type flag. ET (also called "R") tells us which type of coprocessor is installed. If ET =
0, an 80287 is installed. if ET = 1, an 80387 is installed.

NE
Bit 5. New exceptions. If this flag is clear, FPU exceptions arrive as interrupts. If set, as exceptions.

PG
Bit 31. The Paging flag. When this flag is set, memory paging is enabled. We will talk more about that in a
second.

Entering Long Mode

Using the CR Registers

CR0
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CR2 contains a value called the Page Fault Linear Address (PFLA). When a page fault occurs, the address that access
was attempted on is stored in CR2.

The upper 20 bits of CR3 are called the Page Directory Base Register (PDBR). The PDBR holds the physical address of
the page directory.

CR4 contains several flags controlling advanced features of the processor.

Paging is a special job that microprocessors can perform to make the available amount of memory in a system appear larger
and more dynamic than it actually is. In a paging system, a certain amount of space may be laid aside on the hard drive (or
on any secondary storage) called the swap file or swap partition. The virtual memory of the system is everything a
program can access like memory, and includes physical RAM and the swap space.

The total virtual memory is broken down into chunks or pages of memory, each usually being 4096 bytes (although this
number can be different on different systems). These pages can then be moved around throughout the virtual memory, and
all pointers inside those pages will be automatically directed to point to the new locations by referencing them to a global
paging directory that the microprocessor maintains. The pointer to the current paging directory is stored in the CR3 register.

A page fault occurs when the system attempts to read from a page that is marked as "not present" in the paging
directory/table, when the system attempts to write data beyond the boundaries of a currently available page, or when any
number of other errors occur in the paging system. When a page fault occurs, the accessed memory address is stored in the
CR2 register.

In addition to real, protected, and long modes, there are other modes that x86 processors can enter, for different uses :

Virtual 8086 Mode: This is a mode in which application software that was written to run in real mode is
executed under the supervision of a protected-mode, multi-tasking OS.

System Management Mode: This mode enables the processor to perform system tasks, like power
management, without disrupting the operating system or other software.

Global Descriptor Table
The Global Descriptor Table (GDT) is a table in memory that defines the processor's memory segments. The GDT sets the
behavior of the segment registers and helps to ensure that protected mode operates smoothly.

The GDT is pointed to by a special register in the x86 chip, the GDT Register, or simply the GDTR. The GDTR is 48 bits
long. The lower 16 bits tell the size of the GDT, and the upper 32 bits tell the location of the GDT in memory. Here is a
layout of the GDTR:

|LIMIT|----BASE----| 

LIMIT is the size of the GDT, and BASE is the starting address. LIMIT is 1 less than the length of the table, so if LIMIT
has the value 15, then the GDT is 16 bytes long.

CR2

CR3

CR4

Paging

Other Modes

GDTR



To load the GDTR, the instruction LGDT is used:

lgdt [gdtr] 

Where gdtr is a pointer to 6 bytes of memory containing the desired GDTR value. Note that to complete the process of
loading a new GDT, the segment registers need to be reloaded. The CS register must be loaded using a far jump:

flush_gdt: 
    lgdt [gdtr] 
    jmp 0x08:complete_flush 
  
complete_flush: 
    mov ax, 0x10 
    mov ds, ax 
    mov es, ax 
    mov fs, ax 
    mov gs, ax 
    mov ss, ax 
    ret 

The GDT table contains a number of entries called Segment Descriptors. Each is 8 bytes long and contains information on
the starting point of the segment, the length of the segment, and the access rights of the segment.

The following NASM-syntax code represents a single GDT entry:

struc gdt_entry_struct 
 
 limit_low:   resb 2 
 base_low:    resb 2 
 base_middle: resb 1 
 access:      resb 1 
 granularity: resb 1 
 base_high:   resb 1 
 
endstruc 

Each separate program will receive, from the operating system, a number of different memory segments for use. The
characteristics of each local memory segment are stored in a data structure called the Local Descriptor Table (LDT). The
GDT contains pointers to each LDT.

Advanced Interrupts
In the chapter on Interrupts, we mentioned the fact that there are such a thing as software interrupts, and they can be
installed by the system. This page will go more in-depth about that process, and will talk about how ISRs are installed, how
the system finds the ISR, and how the processor actually performs an interrupt.

The actual code that is invoked when an interrupt occurs is called the Interrupt Service Routine (ISR). When an
exception occurs, a program invokes an interrupt, or the hardware raises an interrupt, the processor uses one of several
methods (to be discussed) to transfer control to the ISR, whilst allowing the ISR to safely return control to whatever it
interrupted after execution is complete. At minimum, FLAGS and CS:IP are saved and the ISR's CS:IP loaded; however,
some mechanisms cause a full task switch to occur before the ISR begins (and another task switch when it ends).

In the original 8086 processor (and all x86 processors in Real Mode), the Interrupt Vector Table controlled the flow into
an ISR. The IVT started at memory address 0x00, and could go as high as 0x3FF, for a maximum number of 256 ISRs
(ranging from interrupt 0 to 255). Each entry in the IVT contained 2 words of data: A value for IP and a value for CS (in

GDT

LDT

Interrupt Service Routines

The Interrupt Vector Table
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that order). For example, let's say that we have the following interrupt:

int 14h 

When we trigger the interrupt, the processor goes to the 20th location in the IVT (14h = 20). Since each table entry is 4
bytes (2 bytes IP, 2 bytes CS), the microprocessor goes to location [4*14H]=[50H]. At location 50H is the new IP value,
and at location 52H is the new CS value. Hardware and software interrupts are all stored in the IVT, so installing a new ISR
is as easy as writing a function pointer into the IVT. In newer x86 models, the IVT was replaced with the Interrupt
Descriptor Table.

When interrupts occur in real mode, the FLAGS register is pushed onto the stack, followed by CS, then IP. The iret
instruction restores CS:IP and FLAGS, allowing the interrupted program to continue unaffected. For hardware interrupts,
all other registers (including the general-purpose registers) must be explicitly preserved (e.g. if an interrupt routine makes
use of AX, it should push AX when it begins and pop AX when it ends). It is good practice for software interrupts to
preserve all registers except those containing return values. More importantly, any registers that are modified must be
documented.

Since the 286 (but extended on the 386), interrupts may be managed by a table in memory called the Interrupt Descriptor
Table (IDT). The IDT only comes into play when the processor is in protected mode. Much like the IVT, the IDT contains
a listing of pointers to the ISR routine; however, there are now three ways to invoke ISRs:

Task Gates: These cause a task switch, allowing the ISR to run in its own context (with its own LDT, etc.).
Note that IRET may still be used to return from the ISR, since the processor sets a bit in the ISR's task
segment that causes IRET to perform a task switch to return to the previous task.
Interrupt Gates: These are similar to the original interrupt mechanism, placing EFLAGS, CS and EIP on the
stack. The ISR may be located in a segment of equal or higher privilege to the currently executing segment,
but not of lower privilege (higher privileges are numerically lower, with level 0 being the highest privilege).
Trap Gates: These are identical to interrupt gates, except they do not clear the interrupt flag.

 
The following NASM structure represents an IDT entry:

struc idt_entry_struct 
 
 base_low:  resb 2 
 sel:       resb 2 
 always0:   resb 1 
 flags:     resb 1 
 base_high: resb 2 
 
endstruc 

Field Interrupt Gate Trap Gate Task Gate

base_low Low word of entry address of ISR Unused

sel Segment selector of ISR TSS descriptor

always0 Bits 5, 6, and 7 should be 0. Bits 0-4 are unused and can be left
as zero. Unused, can be left as zero.

flags
Low 5 bits are (MSB first):
01110, bits 5 and 6 form the
DPL, bit 7 is the Present bit.

Low 5 bits are (MSB first):
01111, bits 5 and 6 form the
DPL, bit 7 is the Present bit.

Low 5 bits are (MSB first):
00101, bits 5 and 6 form the
DPL, bit 7 is the Present bit.

base_high High word of entry address of ISR Unused

where:

DPL is the Descriptor Privilege Level (0 to 3, with 0 being highest privilege)
The Present bit indicates whether the segment is present in RAM. If this bit is 0, a Segment Not Present
fault (Exception 11) will ensue if the interrupt is triggered.

The Interrupt Descriptor Table



These ISRs are usually installed and managed by the operating system. Only tasks with sufficient privilege to modify the
IDT's contents may directly install ISRs.

The ISR itself must be placed in appropriate segments (and, if using task gates, the appropriate TSS must be set up),
particularly so that the privilege is never lower than that of executing code. ISRs for unpredictable interrupts (such as
hardware interrupts) should be placed in privilege level 0 (which is the highest privilege), so that this rule is not violated
while a privilege-0 task is running.

Note that ISRs, particularly hardware-triggered ones, should always be present in memory unless there is a good reason for
them not to be. Most hardware interrupts need to be dealt with promptly, and swapping causes significant delay. Also, some
hardware ISRs (such as the hard disk ISR) might be required during the swapping process. Since hardware-triggered ISRs
interrupt processes at unpredictable times, device driver programmers are encouraged to keep ISRs very short. Often an
ISR simply organises for a kernel task to do the necessary work; this kernel task will be run at the next suitable opportunity.
As a result of this, hardware-triggered ISRs are generally very small and little is gained by swapping them to the disk.

However, it may be desirable to set the present bit to 0, even though the ISR actually is present in RAM. The OS can use
the Segment Not Present handler for some other function, for instance to monitor interrupt calls.

The x86 contains a register whose job is to keep track of the IDT. This register is called the IDT Register, or simply
"IDTR". the IDT register is 48 bits long. The lower 16 bits are called the LIMIT section of the IDTR, and the upper 32 bits
are called the BASE section of the IDTR:

|LIMIT|----BASE----| 

The BASE is the base address of the IDT in memory. The IDT can be located anywhere in memory, so the BASE needs to
point to it. The LIMIT field contains the current length of the IDT.

To load the IDTR, the instruction LIDT is used:

lidt [idtr] 

To store the IDTR, the instruction SIDT is used:

sub esp,6 
sidt [esp]   ;store the idtr to the stack 

int arg

calls the specified interrupt

into 0x04

calls interrupt 4 if the overflow flag is set

iret

returns from an interrupt service routine (ISR).

IDT Register

Interrupt Instructions

Default ISR



A good programming practice is to provide a default ISR that can be used as placeholder for unused interrupts. This is to
prevent execution of random code if an unrecognized interrupt is raised. The default ISR can be as simple as a single iret
instruction.

Note, however, that under DOS (which is in real mode), certain IVT entries contain pointers to important, but not
necessarily executable, locations. For instance, entry 0x1D is a far pointer to a video initialisation parameter table for video
controllers, entry 0x1F is a pointer to the graphical character bitmap table.

Sometimes it is important that a routine is not interrupted unexpectedly. For this reason, the x86 allows hardware interrupts
to be disabled if necessary. This means the processor will ignore any interrupt signal it receives from the interrupt
controller. Usually the controller will simply keep waiting until the processor accepts the interrupt signal, so the interrupts
are delayed rather than rejected.

The x86 has an interrupt flag (IF) in the FLAGS register. When this flag is set to 0, hardware interrupts are disabled,
otherwise they are enabled. The command cli sets this flag to 0, and sti sets it to 1. Instructions that load values into the
FLAGS register (such as popf and iret) may also modify this flag.

Note that this flag does not affect the int instruction or processor exceptions; only hardware-generated interrupts. Also note
that in protected mode, code running with less privilege than IOPL will generate an exception if it uses cli or sti. This
means that the operating system can disallow "user" programs from disabling interrupts and thus gaining control of the
system.

Interrupts are automatically disabled when an interrupt handler begins; this ensures the handler will not be interrupted
(unless it issues sti). Software such as device drivers might require precise timing and for this reason should not be
interrupted. This can also help avoid problems if the same interrupt occurs twice in a short space of time. Note that the iret
instruction restores the state of FLAGS before the interrupt handler began, thus allowing further interrupts to occur after the
interrupt handler is complete.

Interrupts should also be disabled when performing certain system tasks, such as when entering protected mode. This
consists of performing several steps, and if the processor tried to invoke an interrupt handler before this process was
complete, it would be in danger of causing an exception, executing invalid code, trashing memory, or causing some other
problem.

Bootloaders
When a computer is turned on, there is some beeping, and some flashing lights, and then a loading screen appears. And
then magically, the operating system loads into memory. The question is then raised, how does the operating system load
up? What gets the ball rolling? The answer is bootloaders.

Bootloaders are small pieces of software that play a role in getting an operating system loaded and ready for execution
when a computer is turned on. The way this happens varies between different computer designs (early computers required a
person to manually set the computer up whenever it was turned on), and often there are several stages in the process of boot
loading.

It's crucial to understand that the term "bootloader" is simply a classification of software (and sometimes a blurry one). To
the processor, a bootloader is just another piece of code that it blindly executes. There are many different kinds of boot
loaders. Some are small, others are large; some follow very simple rules while others show fancy screens and give the user
a selection to choose from.

On IBM PC compatibles, the first program to load is the Basic Input/Output System (BIOS). The BIOS performs many
tests and initialisations, and if everything is OK, the BIOS's boot loader begins. Its purpose is to load another boot loader! It
selects a disk (or some other storage media) from which it loads a secondary boot loader.

Disabling Interrupts

What is a Bootloader?



In some cases, this boot loader loads enough of an operating system to start running it. In other cases, it loads yet another
boot loader from somewhere else. This often happens when multiple operating systems are installed on a single computer;
each OS may have its own specific bootloader, with a "central" bootloader that loads one of the specific ones according to
the user's selection.

Most bootloaders are written exclusively in assembly language (or even machine code), because they need to be compact,
they don't have access to OS routines (such as memory allocation) that other languages might require, they need to follow
some unusual requirements, and they make frequent use of low-level features. However some bootloaders, particularly
those that have many features and allow user input, are quite heavyweight. These are often written in a combination of
assembly and C. The GRand Unified Bootloader (http://www.gnu.org/software/grub/) (GRUB) is an example of such.

Some boot loaders are highly OS-specific, while others are less so - certainly the BIOS boot loader is not OS-specific. The
MS-DOS boot loader (which was placed on all MS-DOS formatted floppy disks) simply checks if the files IO.SYS and
MSDOS.SYS exist; if they are not present it displays the error "Non-System disk or disk error" otherwise it loads and
begins execution of IO.SYS.

The final stage boot loader may be expected (by the OS) to prepare the computer in some way, for instance by placing the
processor in protected mode and programming the interrupt controller. While it would be possible to do these things inside
the OS's initialisation procedure, moving them into the bootloader can simplify the OS design. Some operating systems
require their bootloader to set up a small, basic GDT (Global Descriptor Table) and enter protected mode, in order to
remove the need for the OS to have any 16-bit code. However, the OS might replace this with its own sophisticated GDT
soon after.

The first 512 bytes of a disk are known as the bootsector or Master Boot Record. The boot sector is an area of the disk
reserved for booting purposes. If the bootsector of a disk contains a valid boot sector (the last word of the sector must
contain the signature 0xAA55), then the disk is treated by the BIOS as bootable.

When switched on or reset, an x86 processor begins executing the instructions it finds at address FFFF:0000 (at this stage it
is operating in Real Mode) (Intel Software Developer's Manual Volume 3 Chapter 9 contradicts this information:
Execution starts at the physical address 0xFFFFFFF0, among other things). In IBM PC compatible processors, this address
is mapped to a ROM chip that contains the computer's Basic Input/Output System (BIOS) code. The BIOS is responsible
for many tests and initialisations; for instance the BIOS may perform a memory test, initialise the interrupt controller and
system timer, and test that these devices are working.

Eventually the actual boot loading begins. First the BIOS searches for and initialises available storage media (such as
floppy drives, hard disks, CD drives), then it decides which of these it will attempt to boot from. It checks each device for
availability (e.g. ensuring a floppy drive contains a disk), then the 0xAA55 signature, in some predefined order (often the
order is configurable using the BIOS setup tool). It loads the first sector of the first bootable device it comes across into
RAM, and initiates execution.

Ideally, this will be another boot loader, and it will continue the job, making a few preparations, then passing control to
something else.

While BIOSes remain compatible with 20-year-old software, they have also become more sophisticated over time. Early
BIOSes could not boot from CD drives, but now CD and even DVD booting are standard BIOS features. Booting from
USB storage devices is also possible, and some systems can boot from over the network. To achieve such advanced
functioning, BIOSes sometimes enter protected mode and the like, but then return to real mode in order to be compatible
with legacy boot loaders. This creates a chicken-and-egg problem: bootloaders are written to work with the ubiquitous
BIOS, and BIOSes are written to support all those bootloaders, preventing much in the way of new boot loading features.

However, a new bootstrap technology, the UEFI, is beginning to gain momentum. It is much more sophisticated and will
not be discussed in this article.

The Bootsector

The Boot Process
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Note also that other computer systems - even some that use x86 processors - may boot in different ways. Indeed, some
embedded systems whose software is compact enough to be stored on ROM chips may not need bootloaders at all.

A bootloader runs under certain conditions that the programmer must appreciate in order to make a successful bootloader.
The following pertains to bootloaders initiated by the PC BIOS:

1. The first sector of a drive contains its boot loader.
2. One sector is 512 bytes — the last two bytes of which must be 0xAA55 (i.e. 0x55 followed by 0xAA), or else

the BIOS will treat the drive as unbootable.
3. If everything is in order, said first sector will be placed at RAM address 0000:7C00, and the BIOS's role is

over as it transfers control to 0000:7C00 (that is, it JMPs to that address).
4. The DL register will contain the drive number that is being booted from, useful if you want to read more data

from elsewhere on the drive.
5. The BIOS leaves behind a lot of code, both to handle hardware interrupts (such as a keypress) and to

provide services to the bootloader and OS (such as keyboard input, disk read, and writing to the screen).
You must understand the purpose of the Interrupt Vector Table (IVT), and be careful not to interfere with the
parts of the BIOS that you depend on. Most operating systems replace the BIOS code with their own code,
but the boot loader can't use anything but its own code and what the BIOS provides. Useful BIOS services
include int 10h (for displaying text/graphics), int 13h (disk functions) and int 16h (keyboard input).

6. This means that any code or data that the boot loader needs must either be included in the first sector (be
careful not to accidentally execute data) or manually loaded from another sector of the disk to somewhere in
RAM. Because the OS is not running yet, most of the RAM will be unused. However, you must take care not
to interfere with the RAM that is required by the BIOS interrupt handlers and services mentioned above.

7. The OS code itself (or the next bootloader) will need to be loaded into RAM as well.
8. The BIOS places the stack pointer 512 bytes beyond the end of the boot sector, meaning that the stack

cannot exceed 512 bytes. It may be necessary to move the stack to a larger area.
9. There are some conventions that need to be respected if the disk is to be readable under mainstream

operating systems. For instance you may wish to include a BIOS Parameter Block on a floppy disk to render
the disk readable under most PC operating systems.

Most assemblers will have a command or directive similar to ORG 7C00h that informs the assembler that the code will be
loaded starting at offset 7C00h. The assembler will take this into account when calculating instruction and data addresses.
If you leave this out, the assembler assumes the code is loaded at address 0 and this must be compensated for manually in
the code.

Usually, the bootloader will load the kernel into memory, and then jump to the kernel. The kernel will then be able to
reclaim the memory used by the bootloader (because it has already performed its job). However it is possible to include OS
code within the boot sector and keep it resident after the OS begins.

Here is a simple bootloader demo designed for NASM:

         org 7C00h 
  
         jmp short Start ;Jump over the data (the 'short' keyword makes the jmp instruction smaller) 
  
 Msg:    db "Hello World! " 
 EndMsg: 
  
 Start:  mov bx, 000Fh   ;Page 0, colour attribute 15 (white) for the int 10 calls below 
         mov cx, 1       ;We will want to write 1 character 
         xor dx, dx      ;Start at top left corner 
         mov ds, dx      ;Ensure ds = 0 (to let us load the message) 
         cld             ;Ensure direction flag is cleared (for LODSB) 
  
 Print:  mov si, Msg     ;Loads the address of the first byte of the message, 7C02h in this case 
  
                         ;PC BIOS Interrupt 10 Subfunction 2 - Set cursor position 
                         ;AH = 2 
 Char:   mov ah, 2       ;BH = page, DH = row, DL = column 
         int 10h 
         lodsb           ;Load a byte of the message into AL. 
                         ;Remember that DS is 0 and SI holds the 
                         ;offset of one of the bytes of the message. 
  
                         ;PC BIOS Interrupt 10 Subfunction 9 - Write character and colour 
                         ;AH = 9 
         mov ah, 9       ;BH = page, AL = character, BL = attribute, CX = character count 
         int 10h 

Technical Details
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         inc dl          ;Advance cursor 
  
         cmp dl, 80      ;Wrap around edge of screen if necessary 
         jne Skip 
         xor dl, dl 
         inc dh 
  
         cmp dh, 25      ;Wrap around bottom of screen if necessary 
         jne Skip 
         xor dh, dh 
  
 Skip:   cmp si, EndMsg  ;If we're not at end of message, 
         jne Char        ;continue loading characters 
         jmp Print       ;otherwise restart from the beginning of the message 
  
  
 times 0200h - 2 - ($ - $$)  db 0    ;Zerofill up to 510 bytes 
  
         dw 0AA55h       ;Boot Sector signature 
  
 ;OPTIONAL: 
 ;To zerofill up to the size of a standard 1.44MB, 3.5" floppy disk 
 ;times 1474560 - ($ - $$) db 0 

 
To compile the above file, suppose it is called 'floppy.asm', you can use following command:

nasm -f bin -o floppy.img floppy.asm 

While strictly speaking this is not a bootloader, it is bootable, and demonstrates several things:

How to include and access data in the boot sector
How to skip over included data (this is required for a BIOS Parameter Block)
How to place the 0xAA55 signature at the end of the sector (NASM will issue an error if there is too much
code to fit in a sector)
The use of BIOS interrupts

On Linux, you can issue a command like

cat floppy.img > /dev/fd0 

to write the image to the floppy disk (the image may be smaller than the size of the disk in which case only as much
information as is in the image will be written to the disk). A more sophisticated option is to use the dd utility:

 dd if=floppy.img of=/dev/fd0 

Under Windows you can use software such as RAWRITE.

Hard disks usually add an extra layer to this process, since they may be partitioned. The first sector of a hard disk is known
as the Master Boot Record (MBR). Conventionally, the partition information for a hard disk is included at the end of the
MBR, just before the 0xAA55 signature.

The role of the BIOS is no different to before: to read the first sector of the disk (that is, the MBR) into RAM, and transfer
execution to the first byte of this sector. The BIOS is oblivious to partitioning schemes - all it checks for is the presence of
the 0xAA55 signature.

While this means that one can use the MBR in any way one would like (for instance, omit or extend the partition table) this
is seldom done. Despite the fact that the partition table design is very old and limited - it is limited to four partitions -
virtually all operating systems for IBM PC compatibles assume that the MBR will be formatted like this. Therefore to break
with convention is to render your disk inoperable except to operating systems specifically designed to use it.

In practice, the MBR usually contains a boot loader whose purpose is to load another boot loader - to be found at the start
of one of the partitions. This is often a very simple program which finds the first partition marked Active, loads its first
sector into RAM, and commences its execution. Since by convention the new boot loader is also loaded to address 7C00h,

Hard disks



the old loader may need to relocate all or part of itself to a different location before doing this. Also, ES:SI is expected to
contain the address in RAM of the partition table, and DL the boot drive number. Breaking such conventions may render a
bootloader incompatible with other bootloaders.

However, many boot managers (software that enables the user to select a partition, and sometimes even kernel, to boot
from) use custom MBR code which loads the remainder of the boot manager code from somewhere on disk, then provides
the user with options on how to continue the bootstrap process. It is also possible for the boot manager to reside within a
partition, in which case it must first be loaded by another boot loader.

Most boot managers support chain loading (that is, starting another boot loader via the usual first-sector-of-partition-to-
address-7C00 process) and this is often used for systems such as DOS and Windows. However, some boot managers
(notably GRUB) support the loading of a user-selected kernel image. This can be used with systems such as GNU/Linux
and Solaris, allowing more flexibility in starting the system. The mechanism may differ somewhat from that of chain
loading.

Clearly, the partition table presents a chicken-and-egg problem that is placing unreasonable limitations on partitioning
schemes. One solution gaining momentum is the GUID Partition Table; it uses a dummy MBR partition table so that legacy
operating systems will not interfere with the GPT, while newer operating systems can take advantage of the many
improvements offered by the system.

The GRand Unified Bootloader (http://www.gnu.org/software/grub/) supports the flexible multiboot (http://www.gnu.org/so
ftware/grub/manual/multiboot/html_node/index.html) boot protocol. This protocol aims to simplify the boot process by
providing a single, flexible protocol for booting a variety of operating systems. Many free operating systems can be booted
using multiboot.

GRUB is extremely powerful and is practically a small operating system. It can read various file systems and thus lets you
specify a kernel image by filename as well as separate module files that the kernel may make use of. Command-line
arguments can be passed to the kernel as well - this is a nice way of starting an OS in maintenance mode, or "safe mode", or
with VGA graphics, and so on. GRUB can provide a menu for the user to select from as well as allowing custom loading
parameters to be entered.

Obviously this functionality cannot possibly be provided in 512 bytes of code. This is why GRUB is split into two or three
"stages":

Stage 1 - this is a 512-byte block that has the location of stage 1.5 or stage 2 hardcoded into it. It loads the
next stage.
Stage 1.5 - an optional stage which understands the filesystem (e.g. FAT32 or ext3) where stage 2 resides.
It will find out where stage 2 is located and load it. This stage is quite small and is located in a fixed area,
often just after Stage 1.
Stage 2 - this is a much larger image that has all the GRUB functionality.

Note that Stage 1 may be installed to the Master Boot Record of a hard disk, or may be installed in one of the partitions and
chainloaded by another boot loader.

Windows can not be loaded using multiboot, but the Windows bootloader (like those of other non-multiboot operating
systems) can be chainloaded from GRUB, which isn't quite as good, but does let you boot such systems.

SYSSIZE=0x8000 
| 
| boot.s 
| 
| boot.s is loaded at 0x7c00 by the bios-startup routines, and moves itself 
| out of the way to address 0x90000, and jumps there. 
| 
| It then loads the system at 0x10000, using BIOS interrupts. Thereafter 
| it disables all interrupts, moves the system down to 0x0000, changes 
| to protected mode, and calls the start of system. System then must 
| RE-initialize the protected mode in it's own tables, and enable 
| interrupts as needed. 

GNU GRUB

Example of a Boot Loader ‒ Linux Kernel v0.01
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| 
| NOTE! currently system is at most 8*65536 bytes long. This should be no 
| problem, even in the future. I want to keep it simple. This 512 kB 
| kernel size should be enough - in fact more would mean we'd have to move 
| not just these start-up routines, but also do something about the cache- 
| memory (block IO devices). The area left over in the lower 640 kB is meant 
| for these. No other memory is assumed to be "physical", i.e. all memory 
| over 1Mb is demand-paging. All addresses under 1Mb are guaranteed to match 
| their physical addresses. 
| 
| NOTE1 above is no longer valid in it's entirety. cache-memory is allocated 
| above the 1Mb mark as well as below. Otherwise it is mainly correct. 
| 
| NOTE 2! The boot disk type must be set at compile-time, by setting 
| the following equ. Having the boot-up procedure hunt for the right 
| disk type is severe brain-damage. 
| The loader has been made as simple as possible (had to, to get it 
| in 512 bytes with the code to move to protected mode), and continuous 
| read errors will result in a unbreakable loop. Reboot by hand. It 
| loads pretty fast by getting whole sectors at a time whenever possible. 
 
| 1.44Mb disks: 
sectors = 18 
| 1.2Mb disks: 
| sectors = 15 
| 720kB disks: 
| sectors = 9 
 
.globl begtext, begdata, begbss, endtext, enddata, endbss 
.text 
begtext: 
.data 
begdata: 
.bss 
begbss: 
.text 
 
BOOTSEG = 0x07c0 
INITSEG = 0x9000 
SYSSEG  = 0x1000   | system loaded at 0x10000 (65536). 
ENDSEG = SYSSEG + SYSSIZE 
 
entry start 
start: 
 mov ax,#BOOTSEG 
 mov ds,ax 
 mov ax,#INITSEG 
 mov es,ax 
 mov cx,#256 
 sub si,si 
 sub di,di 
 rep 
 movw 
 jmpi go,INITSEG 
go: mov ax,cs 
 mov ds,ax 
 mov es,ax 
 mov ss,ax 
 mov sp,#0x400  | arbitrary value >>512 
 
 mov ah,#0x03 | read cursor pos 
 xor bh,bh 
 int 0x10 
  
 mov cx,#24 
 mov bx,#0x0007 | page 0, attribute 7 (normal) 
 mov bp,#msg1 
 mov ax,#0x1301 | write string, move cursor 
 int 0x10 
 
| ok, we've written the message, now 
| we want to load the system (at 0x10000) 
 
 mov ax,#SYSSEG 
 mov es,ax  | segment of 0x010000 
 call read_it 
 call kill_motor 
 
| if the read went well we get current cursor position ans save it for 
| posterity. 
 
 mov ah,#0x03 | read cursor pos 
 xor bh,bh 
 int 0x10  | save it in known place, con_init fetches 
 mov [510],dx | it from 0x90510. 
   
| now we want to move to protected mode ... 
 
 cli   | no interrupts allowed ! 
 
| first we move the system to it's rightful place 
 
 mov ax,#0x0000 
 cld   | 'direction'=0, movs moves forward 
do_move: 
 mov es,ax  | destination segment 
 add ax,#0x1000 



 cmp ax,#0x9000 
 jz end_move 
 mov ds,ax  | source segment 
 sub di,di 
 sub si,si 
 mov  cx,#0x8000 
 rep 
 movsw 
 j do_move 
 
| then we load the segment descriptors 
 
end_move: 
 
 mov ax,cs  | right, forgot this at first. didn't work :-) 
 mov ds,ax 
 lidt idt_48  | load idt with 0,0 
 lgdt gdt_48  | load gdt with whatever appropriate 
 
| that was painless, now we enable A20 
 
 call empty_8042 
 mov al,#0xD1  | command write 
 out #0x64,al 
 call empty_8042 
 mov al,#0xDF  | A20 on 
 out #0x60,al 
 call empty_8042 
 
| well, that went ok, I hope. Now we have to reprogram the interrupts :-( 
| we put them right after the intel-reserved hardware interrupts, at 
| int 0x20-0x2F. There they won't mess up anything. Sadly IBM really 
| messed this up with the original PC, and they haven't been able to 
| rectify it afterwards. Thus the BIOS puts interrupts at 0x08-0x0f, 
| which is used for the internal hardware interrupts as well. We just 
| have to reprogram the 8259's, and it isn't fun. 
 
 mov al,#0x11  | initialization sequence 
 out #0x20,al  | send it to 8259A-1 
 .word 0x00eb,0x00eb  | jmp $+2, jmp $+2 
 out #0xA0,al  | and to 8259A-2 
 .word 0x00eb,0x00eb 
 mov al,#0x20  | start of hardware int's (0x20) 
 out #0x21,al 
 .word 0x00eb,0x00eb 
 mov al,#0x28  | start of hardware int's 2 (0x28) 
 out #0xA1,al 
 .word 0x00eb,0x00eb 
 mov al,#0x04  | 8259-1 is master 
 out #0x21,al 
 .word 0x00eb,0x00eb 
 mov al,#0x02  | 8259-2 is slave 
 out #0xA1,al 
 .word 0x00eb,0x00eb 
 mov al,#0x01  | 8086 mode for both 
 out #0x21,al 
 .word 0x00eb,0x00eb 
 out #0xA1,al 
 .word 0x00eb,0x00eb 
 mov al,#0xFF  | mask off all interrupts for now 
 out #0x21,al 
 .word 0x00eb,0x00eb 
 out #0xA1,al 
 
| well, that certainly wasn't fun :-(. Hopefully it works, and we don't 
| need no steenking BIOS anyway (except for the initial loading :-). 
| The BIOS-routine wants lots of unnecessary data, and it's less 
| "interesting" anyway. This is how REAL programmers do it. 
| 
| Well, now's the time to actually move into protected mode. To make 
| things as simple as possible, we do no register set-up or anything, 
| we let the gnu-compiled 32-bit programs do that. We just jump to 
| absolute address 0x00000, in 32-bit protected mode. 
 
 mov ax,#0x0001 | protected mode (PE) bit 
 lmsw ax  | This is it! 
 jmpi 0,8  | jmp offset 0 of segment 8 (cs) 
 
| This routine checks that the keyboard command queue is empty 
| No timeout is used - if this hangs there is something wrong with 
| the machine, and we probably couldn't proceed anyway. 
empty_8042: 
 .word 0x00eb,0x00eb 
 in al,#0x64 | 8042 status port 
 test al,#2  | is input buffer full? 
 jnz empty_8042 | yes - loop 
 ret 
 
| This routine loads the system at address 0x10000, making sure 
| no 64kB boundaries are crossed. We try to load it as fast as 
| possible, loading whole tracks whenever we can. 
| 
| in: es - starting address segment (normally 0x1000) 
| 
| This routine has to be recompiled to fit another drive type, 
| just change the "sectors" variable at the start of the file 
| (originally 18, for a 1.44Mb drive) 



| 
sread: .word 1   | sectors read of current track 
head: .word 0   | current head 
track: .word 0   | current track 
read_it: 
 mov ax,es 
 test ax,#0x0fff 
die: jne die   | es must be at 64kB boundary 
 xor bx,bx  | bx is starting address within segment 
rp_read: 
 mov ax,es 
 cmp ax,#ENDSEG  | have we loaded all yet? 
 jb ok1_read 
 ret 
ok1_read: 
 mov ax,#sectors 
 sub ax,sread 
 mov cx,ax 
 shl cx,#9 
 add cx,bx 
 jnc ok2_read 
 je ok2_read 
 xor ax,ax 
 sub ax,bx 
 shr ax,#9 
ok2_read: 
 call read_track 
 mov cx,ax 
 add ax,sread 
 cmp ax,#sectors 
 jne ok3_read 
 mov ax,#1 
 sub ax,head 
 jne ok4_read 
 inc track 
ok4_read: 
 mov head,ax 
 xor ax,ax 
ok3_read: 
 mov sread,ax 
 shl cx,#9 
 add bx,cx 
 jnc rp_read 
 mov ax,es 
 add ax,#0x1000 
 mov es,ax 
 xor bx,bx 
 jmp rp_read 
 
read_track: 
 push ax 
 push bx 
 push cx 
 push dx 
 mov dx,track 
 mov cx,sread 
 inc cx 
 mov ch,dl 
 mov dx,head 
 mov dh,dl 
 mov dl,#0 
 and dx,#0x0100 
 mov ah,#2 
 int 0x13 
 jc bad_rt 
 pop dx 
 pop cx 
 pop bx 
 pop ax 
 ret 
bad_rt: mov ax,#0 
 mov dx,#0 
 int 0x13 
 pop dx 
 pop cx 
 pop bx 
 pop ax 
 jmp read_track 
 
/* 
 * This procedure turns off the floppy drive motor, so 
 * that we enter the kernel in a known state, and 
 * don't have to worry about it later. 
 */ 
kill_motor: 
 push dx 
 mov dx,#0x3f2 
 mov al,#0 
 outb 
 pop dx 
 ret 
 
gdt: 
 .word 0,0,0,0  | dummy 
 
 .word 0x07FF  | 8Mb - limit=2047 (2048*4096=8Mb) 
 .word 0x0000  | base address=0 



 .word 0x9A00  | code read/exec 
 .word 0x00C0  | granularity=4096, 386 
 
 .word 0x07FF  | 8Mb - limit=2047 (2048*4096=8Mb) 
 .word 0x0000  | base address=0 
 .word 0x9200  | data read/write 
 .word 0x00C0  | granularity=4096, 386 
 
idt_48: 
 .word 0   | idt limit=0 
 .word 0,0   | idt base=0L 
 
gdt_48: 
 .word 0x800  | gdt limit=2048, 256 GDT entries 
 .word gdt,0x9  | gdt base = 0X9xxxx 
  
msg1: 
 .byte 13,10 
 .ascii "Loading system ..." 
 .byte 13,10,13,10 
 
.text 
endtext: 
.data 
enddata: 
.bss 
endbss: 

Perhaps the easiest way to test a bootloader is inside a virtual machine, like VirtualBox or VMware.[1]

Sometimes it is useful if the bootloader supports the GDB remote debug protocol.[2]

1. "How to develop your own Boot Loader" (http://www.codeproject.com/KB/tips/boot-loader.aspx?fid=1541607
&df=90&mpp=25&noise=3&sort=Position&view=Quick&fr=1#_Toc231383187) by Alex Kolesnyk 2009

2. "RedBoot Debug and Bootstrap Firmware" (http://www.ecoscentric.com/ecos/redboot.shtml)

Embedded Systems/Bootloaders and Bootsectors describes bootloaders for a variety of embedded systems.
(Most embedded systems do not have a x86 processor).

x86 Chipset

The original IBM computer was based around the 8088 microprocessor, although the 8088 alone was not enough to handle
all the complex tasks required by the system. A number of other chips were developed to support the microprocessor unit
(MPU), and many of these other chips survive, in one way or another, to this day. The chapters in this section will talk
about some of the additional chips in the standard x86 chipset, including the DMA chip, the interrupt controller, and the
Timer.

This section currently only contains pages about the programmable peripheral chips, although eventually it could also
contain pages about the non-programmable components of the x86 architecture, such as the RAM, the Northbridge, etc.

Many of the components discussed in these chapters have been integrated onto larger die through the years. The DMA and
PIC controllers, for instance, are both usually integrated into the Southbridge ASIC. If the PCI Express standard becomes
widespread, many of these same functions could be integrated into the PCI Express controller, instead of into the traditional
Northbridge/Southbridge chips.

The chips covered in this section are:

Direct Memory Access
Programmable Interrupt Controller
Programmable Interrupt Timer
Programmable Parallel Interface

Testing the Bootloader

Further Reading

Chipset
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Direct Memory Access

The Direct Memory Access chip (DMA) was an important part of the original IBM PC and has become an essential
component of modern computer systems. DMA allows other computer components to access the main memory directly,
without the processor having to manage the data flow. This is important because in many systems, the processor is a data-
flow bottleneck, and it would slow down the system considerably to have the MPU have to handle every memory
transaction.

The original DMA chip was known as the 8237-A chip, although modern variants may be one of many different models.

The DMA chip can be used to move large blocks of data between two memory locations, or it can be used to move blocks
of data from a peripheral device to memory. For instance, DMA is used frequently to move data between the PCI bus to the
expansion cards, and it is also used to manage data transmissions between primary memory (RAM) and the secondary
memory (HDD). While the DMA is operational, it has control over the memory bus, and the MPU may not access the bus
for any reason. The MPU may continue operating on the instructions that are stored in its caches, but once the caches are
empty, or once a memory access instruction is encountered, the MPU must wait for the DMA operation to complete. The
DMA can manage memory operations much more quickly than the MPU can, so the wait times are usually not a large
speed problem.

The DMA chip has up to 8 DMA channels, and one of these channels can be used to cascade a second DMA chip for a total
of 14 channels available. Each channel can be programmed to read from a specific source, to write to a specific source, etc.
Because of this, the DMA has a number of dedicated I/O addresses available, for writing to the necessary control registers.
The DMA uses addresses 0x0000-0x000F for standard control registers, and 0x0080-0x0083 for page registers.

Programmable Interrupt Controller
The original IBM PC contained a chip known as the Programmable Interrupt Controller to handle the incoming
interrupt requests from the system, and to send them in an orderly fashion to the MPU for processing. The original interrupt
controller was the 8259A chip, although modern computers will have a more recent variant. The most common replacement
is the APIC (Advanced Programmable Interrupt Controller) which is essentially an extended version of the old PIC chip to
maintain backwards compatibility. This page will cover the 8259A.

The function of the 8259A is actually relatively simple. Each PIC has 8
input lines, called Interrupt Requests (IRQ), numbered from 0 to 7.
When one of these lines goes high, the PIC alerts the CPU and sends
the appropriate interrupt number. This number is calculated by adding
the IRQ number (0 to 7) to an internal "vector offset" value. The CPU
uses this value to execute an appropriate Interrupt Service Routine.
(For further information, see Advanced Interrupts).

Of course, it's not quite as simple as that, because each system has two
PICS, a "master" and a "slave". So when the slave raises an interrupt,
it's actually sent to the master, which sends that to the CPU. In this
way, interrupts cascade and a processor can have 16 IRQ lines. Of these 16, one is needed for the two PIC chips to interface
with each other, so the number of available IRQs is decreased to 15.

Direct Memory Access

DMA Operation

DMA Channels

Function

Path of an interrupt, from hardware to CPU
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While cli and sti can be used to disable and enable all hardware interrupts, it's sometimes desirable to selectively disable
interrupts from certain devices. For this purpose, PICs have an internal 8-bit register called the Interrupt Mask Register
(IMR). The bits in this register determine which IRQs are passed on to the CPU. If an IRQ is raised but the corresponding
bit in the IMR is set, it is ignored and nothing is sent to the CPU.

Of the 15 usable IRQs, some are universally associated with one type of device:

IRQ 0 ‒ system timer
IRQ 1 — keyboard controller
IRQ 3 — serial port COM2
IRQ 4 — serial port COM1
IRQ 5 — line print terminal 2
IRQ 6 — floppy controller
IRQ 7 — line print terminal 1
IRQ 8 — RTC timer
IRQ 12 — mouse controller
IRQ 13 — math co-processor
IRQ 14 — ATA channel 1
IRQ 15 — ATA channel 2

Each of the system's two PICs are assigned a command port and a data port:

PIC1 PIC2

Command 0x20 0xA0

Data 0x21 0xA1

Normally, reading from the data port returns the IMR register (see above), and writing to it sets the register. We can use this
to set which IRQs should be ignored. For example, to disable IRQ 6 (floppy controller) from firing:

in ax, 0x21 
or ax, (1 << 6) 
out 0x21, ax 

In the same way, to disable IRQ 12 (mouse controller):

in ax, 0xA1 
or ax, (1 << 4)   ;IRQ 12 is actually IRQ 4 of PIC2 
out 0xA1, ax 

Another common task, often performed during the initialization of an operating system, is remapping the PICs. That is,
changing their internal vector offsets, thereby altering the interrupt numbers they send. The initial vector offset of PIC1 is 8,
so it raises interrupt numbers 8 to 15. Unfortunately, some of the low 32 interrupts are used by the CPU for exceptions
(divide-by-zero, page fault, etc.), causing a conflict between hardware and software interrupts. The usual solution to this is
remapping the PIC1 to start at 32, and often the PIC2 right after it at 40. This requires a complete restart of the PICs, but is
not actually too difficult, requiring just eight outs.

mov al, 0x11 
out 0x20, al     ;restart PIC1 
out 0xA0, al     ;restart PIC2 
 

IRQs

Programming

Masking

Remapping
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mov al, 0x20 
out 0x21, al     ;PIC1 now starts at 32 
mov al, 0x28 
out 0xA1, al     ;PIC2 now starts at 40 
 
mov al, 0x04 
out 0x21, al     ;setup cascading 
mov al, 0x02 
out 0xA1, al 
 
mov al, 0x01 
out 0x21, al 
out 0xA1, al     ;done! 

Programmable Interrupt Timer
The Programmable Interval Timer (PIT) is an essential component of modern computers, especially in a multi-tasking
environment. The PIT chip can be made ‒ by setting various register values ‒ to count up or down, at certain rates, and to
trigger interrupts at certain times. The timer can be set into a cyclic mode, so that when it triggers it automatically starts
counting again, or it can be set into a one-time-only countdown mode.

On newer hardware, a HPET (https://en.wikipedia.org/wiki/High_Precision_Event_Timer) (High Precision Event Timer),
which is an evolution of the PIT concept, is likely to be available.

The PIT contains a crystal oscillator which emits a signal 1193182 hz. This output frequency is divided by three different
values to provide three output channels to the CPU. Channel 0 is used as a system timer by most operating systems.
Channel 1 was used to refresh the DRAM, but is no longer used and may not even be accessible. Channel 2 is used to
control the PC speaker. Of these, channel 0 is the most frequently encountered.

To make the PIT fire at a certain frequency f, you need to figure out an integer x, such that 11931820 / x = f. This is a
trivially solved problem which results in the formula:

x = 1193182 / f

How this division actually works is that each divisor is saved in an internal register. On every clock pulse, the register is
decremented. Only when it reaches 0 is the clock pulse allowed to continue on to the CPU. Higher divisors result in lower
frequencies, and vice versa.

Note that because the divisor is 16 bits, and a value of 0 is interpreted as 65536, there are limits on the producible
frequencies:

max = 1193182 / 1 = 1193182 hz
min = 1193182 / 65536 ≈ 18.2065 hz

This final value is also the resolution of the frequency, that is, each consecutive possible frequency differs by 18.2065 hz.

The PIT is accessed via four ports, three for the three channels and one for commands:

Channel 0 0x40

Channel 1 0x41

Channel 2 0x42

Command 0x43

One commonly performed task is setting the frequency of the channel 0, the system timer. If a frequency of 100 hz is
desired, we see that the necessary divisor is 1193182 / 100 = 11931. This value must be sent to the PIT split into a high and
low byte.

Function

Programming
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mov al, 0x36 
out 0x43, al    ;tell the PIT which channel we're setting 
 
mov ax, 11931 
out 0x40, al    ;send low byte 
mov al, ah 
out 0x40, al    ;send high byte 

Programmable Parallel Interface
This section of the x86 Assembly book is a stub. You can help by expanding this section.

The Original x86 PC had another peripheral chip onboard known as the 8255A Programmable Peripheral Interface
(PPI). The 8255A, and variants (82C55A, 82B55A, etc.) controlled the communications tasks with the outside world. The
PPI chips can be programmed to operate in different I/O modes.
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cycles that each instruction takes, and http://siyobik.info/index.php?module=x86 gives a thorough summary
of each command, including pseudocode describing the operation.
AMD's AMD64 documentation on CD-ROM (U.S. and Canada only) and downloadable PDF format - maybe
not independent but complete description of AMD64 through Assembly.
http://developer.amd.com/documentation/guides/Pages/default.aspx#manuals
Optimizing subroutines in assembly language: An optimization guide for x86 platforms (http://www.agner.org/
optimize/optimizing_assembly.pdf)
The microarchitecture of Intel and AMD CPU’s: An optimization guide for assembly programmers and
compiler makers (http://www.agner.org/optimize/microarchitecture.pdf)
Instruction tables: Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel and
AMD CPU's (http://www.agner.org/optimize/instruction_tables.pdf)
Calling conventions for different C++ compilers and operating systems (http://www.agner.org/optimize/calling
_conventions.pdf)
"8086 Microprocessor Emulator" (http://www.emu8086.com/) "emu8086 is the emulator ... with integrated
8086 assembler and tutorials for beginners. The emulator runs programs like the real microprocessor in
step-by-step mode. It shows registers, memory, stack, variables and flags. All memory values can be
investigated and edited by a double click."
"Using the RDTSC Instruction for Performance Monitoring" (http://www.ccsl.carleton.ca/~jamuir/rdtscpm1.pd
f)
"SIMPLY FPU" (http://www.website.masmforum.com/tutorials/fptute/)
"Paul Hsieh's x86 Assembly Language Page" (http://www.azillionmonkeys.com/qed/asm.html)
"The world's leading source for technical x86 processor information" (http://www.sandpile.org/)
"The Art of Picking Intel Registers" (http://www.swansontec.com/sregisters.html)
x86 Assembly Adventures Open source exercises (https://github.com/xorpd/asm_prog_ex)

Assembly Languages

 x86 Assembly The Assembly Language used by 32-bit Intel Machines including the 386, 486, and
Pentium Family.

 MIPS Assembly A Common RISC Assembly Language that is both powerful and relatively easy to
learn.

 68000 Assembly The Assembly language used by the Motorola 68000 series of microprocessors.

 PowerPC
Assembly

The Assembly language used by the IBM PowerPC architecture.

 SPARC
Assembly

The Assembly language used by SPARC Systems and mainframes.

 6502 Assembly The 6502 is a popular 8-bit microcontroller that is cheap and easy to use.

 TI 83 Plus
Assembly

The instruction set used with the TI 83 Plus brand of programmable graphing
calculators.

 360 Assembly The instruction set used with the IBM 360 / 370 / 93xx and z/System brand of
Mainframe computers.
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Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is
published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim,
or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in
the notice that says that the Document is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover
Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is
available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX
input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF
designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
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include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced
by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the
material this License requires to appear in the title page. For works in formats which do not have any title page as such,
"Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of
the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in
parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of
such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document.
These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this
License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to
obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more
than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-
readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location
from which the general network-using public has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number
of copies, to give them a chance to provide you with an updated version of the Document.
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You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided
that you release the Modified Version under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to use the

Modified Version under the terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the

Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year,

new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled
"History" in the Document, create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the "History" section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant

Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version
by various parties—for example, statements of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text,
to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for
the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may
not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for
or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS



You may combine the Document with other documents released under this License, under the terms defined in section 4
above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced
with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the
license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one
section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled
"Dedications". You must delete all sections Entitled "Endorsements".

You may make a collection consisting of the Document and other documents released under this License, and replace the
individual copies of this License in the various documents with a single copy that is included in the collection, provided
that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you
insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a
volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not
used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is
included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than
one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of
section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you
may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers,
provided that you also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to
Preserve its Title (section 1) will typically require changing the actual title.

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under
this License.

6. COLLECTIONS OF DOCUMENTS

7. AGGREGATION WITH INDEPENDENT WORKS

8. TRANSLATION

9. TERMINATION



However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the
copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of
the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any
work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights
from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some
or all of the same material does not give you any rights to use it.

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to
time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered
version of this License "or any later version" applies to it, you have the option of following the terms and conditions either
of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that
version for the Document.

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes
copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can
edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means any set
of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons
Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future
copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under this
License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no
cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time
before August 1, 2009, provided the MMC is eligible for relicensing.

How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document and put the following
copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

10. FUTURE REVISIONS OF THIS LICENSE

11. RELICENSING

http://www.gnu.org/copyleft/


If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to
suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under
your choice of free software license, such as the GNU General Public License, to permit their use in free software.
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